ترغب بنشر مسار تعليمي؟ اضغط هنا

Virtual Cell Clustering with Optimal Resource Allocation to Maximize Capacity

96   0   0.0 ( 0 )
 نشر من قبل Michal Yemini
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

This work proposes a new resource allocation optimization and network management framework for wireless networks using neighborhood-based optimization rather than fully centralized or fully decentralized methods. We propose hierarchical clustering with a minimax linkage criterion for the formation of the virtual cells. Once the virtual cells are formed, we consider two cooperation models: the interference coordination model and the coordinated multi-point decoding model. In the first model base stations in a virtual cell decode their signals independently, but allocate the communication resources cooperatively. In the second model base stations in the same virtual cell allocate the communication resources and decode their signals cooperatively. We address the resource allocation problem for each of these cooperation models. For the interference coordination model this problem is an NP-hard mixed-integer optimization problem whereas for the coordinated multi-point decoding model it is convex. Our numerical results indicate that proper design of the neighborhood-based optimization leads to significant gains in sum rate over fully decentralized optimization, yet may also have a significant sum rate penalty compared to fully centralized optimization. In particular, neighborhood-based optimization has a significant sum rate penalty compared to fully centralized optimization in the coordinated multi-point model, but not the interference coordination model.



قيم البحث

اقرأ أيضاً

This work presents a new network optimization framework for cellular networks using neighborhood-based optimization. Under this optimization framework resources are allocated within virtual cells encompassing several base-stations and the users withi n their coverage areas. We form the virtual cells using hierarchical clustering with a minimax linkage criterion given a particular number of such cells. Once the virtual cells are formed, we consider an interference coordination model in which base-stations in a virtual cell jointly allocate the channels and power to users within the virtual cell. We propose two new schemes for solving this mixed integer NP-hard resource allocation problem. The first scheme transforms the problem into a continuous variables problem; the second scheme proposes a new channel allocation method and then alternately solves the channel allocation problem using this new method, and the power allocation problem. We evaluate the average system sum rate of these schemes for a variable number of virtual cells. These results quantify the sum-rate along a continuum of fully-centralized versus fully-distributed optimization for different clustering and resource allocation strategies. These results indicate that the penalty of fully-distributed optimization versus fully-centralized (cloud RAN) can be as high as 50%. However, if designed properly, a few base stations within a virtual cell using neighborhood-based optimization have almost the same performance as fully-centralized optimization.
This work presents a new resource allocation optimization framework for cellular networks using neighborhood-based optimization. Under this optimization framework resources are allocated within virtual cells encompassing several base-stations and the users within their coverage area. Incorporating the virtual cell concept enables the utilization of more sophisticated cooperative communication schemes such as coordinated multi-point decoding. We form the virtual cells using hierarchical clustering given a particular number of such cells. Once the virtual cells are formed, we consider a cooperative decoding scheme in which the base-stations in each virtual cell jointly decode the signals that they receive. We propose an iterative solution for the resource allocation problem resulting from the cooperative decoding within each virtual cell. Numerical results for the average system sum rate of our network design under hierarchical clustering are presented. These results indicate that virtual cells with neighborhood-based optimization leads to significant gains in sum rate over optimization within each cell, yet may also have a significant sum-rate penalty compared to fully-centralized optimization.
We consider a fully-loaded ground wireless network supporting unmanned aerial vehicle (UAV) transmission services. To enable the overload transmissions to a ground user (GU) and a UAV, two transmission schemes are employed, namely non-orthogonal mult iple access (NOMA) and relaying, depending on whether or not the GU and UAV are served simultaneously. Under the assumption of the system operating with infinite blocklength (IBL) codes, the IBL throughputs of both the GU and the UAV are derived under the two schemes. More importantly, we also consider the scenario in which data packets are transmitted via finite blocklength (FBL) codes, i.e., data transmission to both the UAV and the GU is performed under low-latency and high reliability constraints. In this setting, the FBL throughputs are characterized again considering the two schemes of NOMA and relaying. Following the IBL and FBL throughput characterizations, optimal resource allocation designs are subsequently proposed to maximize the UAV throughput while guaranteeing the throughput of the cellular user.Moreover, we prove that the relaying scheme is able to provide transmission service to the UAV while improving the GUs performance, and that the relaying scheme potentially offers a higher throughput to the UAV in the FBL regime than in the IBL regime. On the other hand, the NOMA scheme provides a higher UAV throughput (than relaying) by slightly sacrificing the GUs performance.
Multi-access edge computing (MEC) and non-orthogonal multiple access (NOMA) have been regarded as promising technologies to improve computation capability and offloading efficiency of the mobile devices in the sixth generation (6G) mobile system. Thi s paper mainly focuses on the hybrid NOMA-MEC system, where multiple users are first grouped into pairs, and users in each pair offload their tasks simultaneously by NOMA, and then a dedicated time duration is scheduled to the more delay-tolerable user for uploading the remaining data by orthogonal multiple access (OMA). For the conventional NOMA uplink transmission, successive interference cancellation (SIC) is applied to decode the superposed signals successively according to the channel state information (CSI) or the quality of service (QoS) requirement. In this work, we integrate the hybrid SIC scheme which dynamically adapts the SIC decoding order among all NOMA groups. To solve the user grouping problem, a deep reinforcement learning (DRL) based algorithm is proposed to obtain a close-to-optimal user grouping policy. Moreover, we optimally minimize the offloading energy consumption by obtaining the closed-form solution to the resource allocation problem. Simulation results show that the proposed algorithm converges fast, and the NOMA-MEC scheme outperforms the existing orthogonal multiple access (OMA) scheme.
98 - A. Khalili , S. Zargari , Q. Wu 2021
In this letter, we study the resource allocation for a multiuser intelligent reflecting surface (IRS)-aided simultaneous wireless information and power transfer (SWIPT) system. Specifically, a multi-antenna base station (BS) transmits energy and info rmation signals simultaneously to multiple energy harvesting receivers (EHRs) and information decoding receivers (IDRs) assisted by an IRS. Under this setup, we introduce a multi-objective optimization (MOOP) framework to investigate the fundamental trade-off between the data sum-rate maximization and the total harvested energy maximization, by jointly optimizing the energy/information beamforming vectors at the BS and the phase shifts at the IRS. This MOOP problem is first converted to a single-objective optimization problem (SOOP) via the $epsilon$-constraint method and then solved by majorization minimization (MM) and inner approximation (IA) techniques. Simulation results unveil a non-trivial trade-off between the considered competing objectives, as well as the superior performance of the proposed scheme as compared to various baseline schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا