ﻻ يوجد ملخص باللغة العربية
Contradictory theoretical results for oxygen vacancies in SrTiO$_3$ (STO) were often related to the peculiar properties of STO, which is a $d^0$ transition metal oxide with mixed ionic-covalent bonding. Here, we apply, for the first time, density functional theory (DFT) within the extended Hubbard DFT+$U$+$V$ approach, including on-site as well as inter-site electronic interactions, to study oxygen-deficient STO with Hubbard $U$ and $V$ parameters computed self-consistently via density-functional perturbation theory. Our results demonstrate that the extended Hubbard functional is a promising approach to study defects in materials with electronic properties similar to STO. Indeed, DFT+$U$+$V$ provides a better description of stoichiometric STO compared to standard DFT or DFT+$U$, the band gap and crystal field splitting being in good agreement with experiments. In turn, also the description of the electronic properties of oxygen vacancies in STO is improved, with formation energies in excellent agreement with experiments as well as results obtained with the most frequently used hybrid functionals, however at a fraction of the computational cost. While our results do not fully resolve the contradictory findings reported in literature, our systematic approach leads to a deeper understanding of their origin, which stems from different cell sizes, STO phases, the exchange-correlation functional, and the treatment of structural relaxations and spin-polarization.
We propose a self-consistent site-dependent Hubbard $U$ approach for DFT+$U$ calculations of defects in complex transition-metal oxides, using Hubbard parameters computed via linear-response theory. The formation of a defect locally perturbs the chem
We present a first-principles investigation of the structural, electronic, and magnetic properties of pyrolusite ($beta$-MnO$_2$) using conventional and extended Hubbard-corrected density-functional theory (DFT+$U$ and DFT+$U$+$V$). The onsite $U$ an
We report on the observation of metallic behavior in thin films of oxygen-deficient SrTiO$_3$ - down to 9 unit cells - when coherently strained on (001) SrTiO$_3$ or DyScO$_3$-buffered (001) SrTiO$_3$ substrates. These films have carrier concentratio
The electronic band structure of SrTiO$_3$ is investigated in the all-electron QS$GW$ approximation. Unlike previous pseudopotential based QS$GW$ or single-shot $G_0W_0$ calculations, the gap is found to be significantly overestimated compared to exp
The origin of the 2-dimensional electron system (2DES) appearing at the (001) interface of band insulators $rm SrTiO_3$ and $rm LaAlO_3$ has been rationalized in the framework of a polar catastrophe scenario. This implies the existence of a critical