ﻻ يوجد ملخص باللغة العربية
The electronic band structure of SrTiO$_3$ is investigated in the all-electron QS$GW$ approximation. Unlike previous pseudopotential based QS$GW$ or single-shot $G_0W_0$ calculations, the gap is found to be significantly overestimated compared to experiment. After putting in a correction for the underestimate of the screening by the random phase approximation in terms of a 0.8$Sigma$ approach, the gap is still overestimated. The 0.8$Sigma$ approach is discussed and justified in terms of various recent literature results including electron-hole corrections. Adding a lattice polarization correction (LPC) in the ${bf q}rightarrow0$ limit for the screening of $W$, agreement with experiment is recovered. The LPC is alternatively estimated using a polaron model. We apply our approach to the cubic and tetragonal phases as well as a hypothetical layered post-perovskite structure and find that the LDA (local density approximation) to $GW$ gap correction is almost independent of structure.
Quasi-particle self-consistent $GW$ calculations are presented for the band structures of LiGaO2 and NaGaO2 in the orthorhombic $Pna2_1$ tetrahedrally coordinated crystal structures. Symmetry labeling of the bands near the gap is carried out and effe
Contradictory theoretical results for oxygen vacancies in SrTiO$_3$ (STO) were often related to the peculiar properties of STO, which is a $d^0$ transition metal oxide with mixed ionic-covalent bonding. Here, we apply, for the first time, density fun
Epitaxial interfaces and superlattices comprised of polar and non-polar perovskite oxides have generated considerable interest because they possess a range of desirable properties for functional devices. In this work, emergent polarization in superla
Halide perovskites constitute a chemically-diverse class of crystals with great promise as photovoltaic absorber materials, featuring band gaps between about 1 and 3.5 eV depending on composition. Their diversity calls for a general computational app
Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic p