ﻻ يوجد ملخص باللغة العربية
We propose a self-consistent site-dependent Hubbard $U$ approach for DFT+$U$ calculations of defects in complex transition-metal oxides, using Hubbard parameters computed via linear-response theory. The formation of a defect locally perturbs the chemical environment of Hubbard sites in its vicinity, resulting in different Hubbard $U$ parameters for different sites. Using oxygen vacancies in SrMnO$_3$ as a model system, we investigate the dependence of $U$ on the chemical environment and study its influence on the structural, electronic, and magnetic properties of defective bulk and strained thin-film structures. Our results show that a self-consistent $U$ improves the description of stoichiometric bulk SrMnO$_3$ with respect to GGA or GGA+$U$ calculations using an empirical $U$. For defective systems, $U$ changes as a function of the distance of the Hubbard site from the defect, its oxidation state and the magnetic phase of the bulk structure. Taking into account this dependence, in turn, affects the computed defect formation energies and the predicted strain- and/or defect-induced magnetic phase transitions, especially when occupied localized states appear in the band gap of the material upon defect creation.
Contradictory theoretical results for oxygen vacancies in SrTiO$_3$ (STO) were often related to the peculiar properties of STO, which is a $d^0$ transition metal oxide with mixed ionic-covalent bonding. Here, we apply, for the first time, density fun
In a recent publication (S. Dong et al., Phys. Rev. Lett.103, 127201 (2009)), two (related) mechanisms were proposed to understand the intrinsic exchange bias present in oxides heterostructures involving G-type antiferromagnetic perovskites. The firs
Oxygen octahedral rotations have been measured in short-period (LaNiO$_3$)$_n$/(SrMnO$_3$)$_m$ superlattices using synchrotron diffraction. The in-plane and out-of-plane bond angles and lengths are found to systematically vary with superlattice compo
The defect chemistry of perovskite compounds is directly related to the stoichiometry and to the valence states of the transition metal ions. Such relations are of high interest as they offer the possibility to influence the catalytic activity of per
The self-consistent charge density functional tight-binding (DFTB) theory is a useful tool for realizing the electronic structures of large molecular complex systems. In this study, we analyze the electronic structure of C61, formed by fullerene C60