ترغب بنشر مسار تعليمي؟ اضغط هنا

Metallicity in Ultra-Thin Oxygen-Deficient SrTiO$_3$ Thin Films

114   0   0.0 ( 0 )
 نشر من قبل Purnima Parvathy Balakrishnan
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the observation of metallic behavior in thin films of oxygen-deficient SrTiO$_3$ - down to 9 unit cells - when coherently strained on (001) SrTiO$_3$ or DyScO$_3$-buffered (001) SrTiO$_3$ substrates. These films have carrier concentrations of up to 2$times10^{22}$ cm$^{-3}$ and mobilities of up to 19,000 cm$^2$/V-s at 2 K. There exists a non-conducting layer in our SrTiO$_{3-delta}$ films that is larger in films with lower carrier concentrations. This non-conducting layer can be attributed to a surface depletion layer due to a Fermi level pinning potential. The depletion width, transport, and structural properties are not greatly affected by the insertion of a DyScO$_3$ buffer between the SrTiO$_3$ film and SrTiO$_3$ substrate.



قيم البحث

اقرأ أيضاً

Control of thin film stoichiometry is of primary relevance to achieve desired functionality. Pulsed laser deposition ablating from binary-oxide targets (sequential deposition) can be applied to precisely control the film composition, offsetting the i mportance of growth conditions on the film stoichiometry. In this work, we demonstrate that the cation stoichiometry of SrTiO$_3$ thin films can be finely tuned by sequential deposition from SrO and TiO$_2$ targets. Homoepitaxial SrTiO$_3$ films were deposited at different substrate temperatures and Ti/Sr pulse ratios, allowing the establishment of a growth window for stoichiometric SrTiO$_3$. The growth kinetics and nucleation processes were studied by reflection high-energy electron diffraction and atomic force microscopy, providing information about the growth mode and the degree of off-stoichiometry. At the optimal (stoichiometric) growth conditions, films exhibit atomically flat surfaces, whereas off-stoichiometry is accommodated by crystal defects, 3D islands and/or surface precipitates depending on the substrate temperature and the excess cation. This technique opens the way to precisely control stoichiometry and doping of oxide thin films.
On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO$_{2-x}$) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfC$_x$) at the surface during vacuum annealing at temperatures as low as 600 {deg}C is repo rted. Using X-ray photoelectron spectroscopy the evolution of the HfC$_x$ surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO$_2$ thin films prepared and measured under identical conditions, the formation of HfC$_x$ was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.
The 2D electron gas (2DEG) formed at the surface of SrTiO$_3$(001) has attracted great interest because of its fascinating physical properties and potential as a novel electronic platform, but up to now has eluded a comprehensible way to tune its pro perties. Using angle-resolved photoemission spectroscopy with and without spin detection we here show that the band filling can be controlled by growing thin SrTiO$_3$ films on Nb doped SrTiO$_3$(001) substrates. This results in a single spin-polarised 2D Fermi surface, which bears potential as platform for Majorana physics. Based on our results it can furthermore be concluded that the 2DEG does not extend more than 2 unit cells into the film and that its properties depend on the amount of SrO$_x$ at the surface and possibly the dielectric response of the system.
The intrinsic magnetic state (ferromagnetic or antiferromagnetic) of ultra-thin LaMnO$_3$ films on the mostly used SrTiO$_3$ substrate is a long-existing question under debate. Either strain effect or non-stoichiometry was argued to be responsible fo r the experimental ferromagnetism. In a recent experiment [Science textbf{349}, 716 (2015)], one more mechanism, namely the self-doping due to polar discontinuity, was argued to be the driving force of ferromagnetism beyond the critical thickness. Here systematic first-principles calculations have been performed to check these mechanisms in ultra-thin LaMnO$_3$ films as well as superlattices. Starting from the very precise descriptions of both LaMnO$_3$ and SrTiO$_3$, it is found that the compressive strain is the dominant force for the appearance of ferromagnetism, while the open surface with oxygen vacancies leads to the suppression of ferromagnetism. Within LaMnO$_3$ layers, the charge reconstructions involve many competitive factors and certainly go beyond the intuitive polar catastrophe model established for LaAlO$_3$/SrTiO$_3$ heterostructures. Our study not only explains the long-term puzzle regarding the magnetism of ultra-thin LaMnO$_3$ films, but also shed light on how to overcome the notorious magnetic dead layer in ultra-thin manganites.
The effect of high tensile strain and low dimensionality on the magnetic and electronic properties of CaMnO$_3$ ultrathin films, epitaxially grown on SrTiO$_3$ substrates, are experimentally studied and theoretically analyzed. By means of ab initio c alculations, we find that, both, the high strain produced by the substrate and the presence of the free surface contribute to the stabilization of an in-plane ferromagnetic coupling, giving rise to a non-zero net magnetic moment in the ultrathin films. Coupled with this change in the magnetic order we find an insulator-metal transition triggered by the quantum confinement and the tensile epitaxial strain. Accordingly, our magnetic measurements in 3nm ultrathin films show a ferromagnetic hysteresis loop, absent in the bulk compound due to its G-type antiferromagnetic structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا