ترغب بنشر مسار تعليمي؟ اضغط هنا

Teaching Responsible Data Science: Charting New Pedagogical Territory

64   0   0.0 ( 0 )
 نشر من قبل Julia Stoyanovich
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Although numerous ethics courses are available, with many focusing specifically on technology and computer ethics, pedagogical approaches employed in these courses rely exclusively on texts rather than on software development or data analysis. Technical students often consider these courses unimportant and a distraction from the real material. To develop instructional materials and methodologies that are thoughtful and engaging, we must strive for balance: between texts and coding, between critique and solution, and between cutting-edge research and practical applicability. Finding such balance is particularly difficult in the nascent field of responsible data science (RDS), where we are only starting to understand how to interface between the intrinsically different methodologies of engineering and social sciences. In this paper we recount a recent experience in developing and teaching an RDS course to graduate and advanced undergraduate students in data science. We then dive into an area that is critically important to RDS -- transparency and interpretability of machine-assisted decision-making, and tie this area to the needs of emerging RDS curricula. Recounting our own experience, and leveraging literature on pedagogical methods in data science and beyond, we propose the notion of an object-to-interpret-with. We link this notion to nutritional labels -- a family of interpretability tools that are gaining popularity in RDS research and practice. With this work we aim to contribute to the nascent area of RDS education, and to inspire others in the community to come together to develop a deeper theoretical understanding of the pedagogical needs of RDS, and contribute concrete educational materials and methodologies that others can use. All course materials are publicly available at https://dataresponsibly.github.io/courses.



قيم البحث

اقرأ أيضاً

We describe an ecosystem for teaching data science (DS) to engineers which blends theory, methods, and applications, developed at the Faculty of Physical and Mathematical Sciences, Universidad de Chile, over the last three years. This initiative has been motivated by the increasing demand for DS qualifications both from academic and professional environments. The ecosystem is distributed in a collaborative fashion across three departments in the above Faculty and includes postgraduate programmes, courses, professional diplomas, data repositories, laboratories, trainee programmes, and internships. By sharing our teaching principles and the innovative components of our approach to teaching DS, we hope our experience can be useful to those developing their own DS programmes and ecosystems. The open challenges and future plans for our ecosystem are also discussed at the end of the article.
189 - Mariah Baker 2015
Observational bias against finding Milky Way (MW) dwarf galaxies at low Galactic latitudes (b < 20 deg) and at low surface brightnesses (fainter than 29 mag arcsec^-2, in the V-band) currently limits our understanding of the faintest limits of the ga laxy luminosity function. This paper is a proof-of-concept that groups of two or more RR Lyrae stars reveal MW dwarf galaxies at d > 50 kpc in these unmined regions of parameter space, with only modest contamination from interloper groups when large halo structures are excluded. For example, a friends-of-friends (FOF) search with a linking length of 500 pc could reveal dwarf galaxies more luminous than M_V = -3.2 mag and with surface brightnesses as faint as 31 mag arcsec^-2 (or even fainter, depending on RR Lyrae specific frequency). Although existing public RR Lyrae catalogs are highly incomplete at d > 50 kpc and/or include <1% of the MW halos volume, a FOF search reveals two known dwarfs (Bootes I and Sextans) and two dwarf candidate groups possibly worthy of follow-up. PanSTARRS 1 (PS1) may catalog RR Lyrae to 100 kpc which would include ~15% of predicted MW dwarf galaxies. Groups of PS1 RR Lyrae should therefore reveal very low surface brightness and low Galactic latitude dwarfs within its footprint, if they exist. With sensitivity to RR Lyrae to d >600 kpc, LSST is the only planned survey that will be both wide-field and deep enough to use RR Lyrae to definitively measure the Milky Ways dwarf galaxy census to extremely low surface brightnesses, and through the Galactic plane.
In the current era, people and society have grown increasingly reliant on artificial intelligence (AI) technologies. AI has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks for oppre ssion and calamity. Discussions about whether we should (re)trust AI have repeatedly emerged in recent years and in many quarters, including industry, academia, healthcare, services, and so on. Technologists and AI researchers have a responsibility to develop trustworthy AI systems. They have responded with great effort to design more responsible AI algorithms. However, existing technical solutions are narrow in scope and have been primarily directed towards algorithms for scoring or classification tasks, with an emphasis on fairness and unwanted bias. To build long-lasting trust between AI and human beings, we argue that the key is to think beyond algorithmic fairness and connect major aspects of AI that potentially cause AIs indifferent behavior. In this survey, we provide a systematic framework of Socially Responsible AI Algorithms that aims to examine the subjects of AI indifference and the need for socially responsible AI algorithms, define the objectives, and introduce the means by which we may achieve these objectives. We further discuss how to leverage this framework to improve societal well-being through protection, information, and prevention/mitigation.
Over the past decades, numerous practical applications of machine learning techniques have shown the potential of data-driven approaches in a large number of computing fields. Machine learning is increasingly included in computing curricula in higher education, and a quickly growing number of initiatives are expanding it in K-12 computing education, too. As machine learning enters K-12 computing education, understanding how intuition and agency in the context of such systems is developed becomes a key research area. But as schools and teachers are already struggling with integrating traditional computational thinking and traditional artificial intelligence into school curricula, understanding the challenges behind teaching machine learning in K-12 is an even more daunting challenge for computing education research. Despite the central position of machine learning in the field of modern computing, the computing education research body of literature contains remarkably few studies of how people learn to train, test, improve, and deploy machine learning systems. This is especially true of the K-12 curriculum space. This article charts the emerging trajectories in educational practice, theory, and technology related to teaching machine learning in K-12 education. The article situates the existing work in the context of computing education in general, and describes some differences that K-12 computing educators should take into account when facing this challenge. The article focuses on key aspects of the paradigm shift that will be required in order to successfully integrate machine learning into the broader K-12 computing curricula. A crucial step is abandoning the belief that rule-based traditional programming is a central aspect and building block in developing next generation computational thinking.
The history of science and technology shows that seemingly innocuous developments in scientific theories and research have enabled real-world applications with significant negative consequences for humanity. In order to ensure that the science and te chnology of AI is developed in a humane manner, we must develop research publication norms that are informed by our growing understanding of AIs potential threats and use cases. Unfortunately, its difficult to create a set of publication norms for responsible AI because the field of AI is currently fragmented in terms of how this technology is researched, developed, funded, etc. To examine this challenge and find solutions, the Montreal AI Ethics Institute (MAIEI) co-hosted two public consultations with the Partnership on AI in May 2020. These meetups examined potential publication norms for responsible AI, with the goal of creating a clear set of recommendations and ways forward for publishers. In its submission, MAIEI provides six initial recommendations, these include: 1) create tools to navigate publication decisions, 2) offer a page number extension, 3) develop a network of peers, 4) require broad impact statements, 5) require the publication of expected results, and 6) revamp the peer-review process. After considering potential concerns regarding these recommendations, including constraining innovation and creating a black market for AI research, MAIEI outlines three ways forward for publishers, these include: 1) state clearly and consistently the need for established norms, 2) coordinate and build trust as a community, and 3) change the approach.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا