ترغب بنشر مسار تعليمي؟ اضغط هنا

Teaching Machine Learning in K-12 Computing Education: Potential and Pitfalls

167   0   0.0 ( 0 )
 نشر من قبل Tapani Toivonen Dr.
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the past decades, numerous practical applications of machine learning techniques have shown the potential of data-driven approaches in a large number of computing fields. Machine learning is increasingly included in computing curricula in higher education, and a quickly growing number of initiatives are expanding it in K-12 computing education, too. As machine learning enters K-12 computing education, understanding how intuition and agency in the context of such systems is developed becomes a key research area. But as schools and teachers are already struggling with integrating traditional computational thinking and traditional artificial intelligence into school curricula, understanding the challenges behind teaching machine learning in K-12 is an even more daunting challenge for computing education research. Despite the central position of machine learning in the field of modern computing, the computing education research body of literature contains remarkably few studies of how people learn to train, test, improve, and deploy machine learning systems. This is especially true of the K-12 curriculum space. This article charts the emerging trajectories in educational practice, theory, and technology related to teaching machine learning in K-12 education. The article situates the existing work in the context of computing education in general, and describes some differences that K-12 computing educators should take into account when facing this challenge. The article focuses on key aspects of the paradigm shift that will be required in order to successfully integrate machine learning into the broader K-12 computing curricula. A crucial step is abandoning the belief that rule-based traditional programming is a central aspect and building block in developing next generation computational thinking.



قيم البحث

اقرأ أيضاً

Programming education is becoming important as demands on computer literacy and coding skills are growing. Despite the increasing popularity of interactive online learning systems, many programming courses in schools have not changed their teaching f ormat from the conventional classroom setting. We see two research opportunities here. Students may have diverse expertise and experience in programming. Thus, particular content and teaching speed can be disengaging for experienced students or discouraging for novice learners. In a large classroom, instructors cannot oversee the learning progress of each student, and have difficulty matching teaching materials with the comprehension level of individual students. We present ClassCode, a web-based environment tailored to programming education in classrooms. Students can take online tutorials prepared by instructors at their own pace. They can then deepen their understandings by performing interactive coding exercises interleaved within tutorials. ClassCode tracks all interactions by each student, and summarizes them to instructors. This serves as a progress report, facilitating the instructors to provide additional explanations in-situ or revise course materials. Our user evaluation through a small lecture and expert review by instructors and teaching assistants confirm the potential of ClassCode by uncovering how it could address issues in existing programming courses at universities.
We present ReproducedPapers.org: an open online repository for teaching and structuring machine learning reproducibility. We evaluate doing a reproduction project among students and the added value of an online reproduction repository among AI resear chers. We use anonymous self-assessment surveys and obtained 144 responses. Results suggest that students who do a reproduction project place more value on scientific reproductions and become more critical thinkers. Students and AI researchers agree that our online reproduction repository is valuable.
Educational technologies, and the systems of schooling in which they are deployed, enact particular ideologies about what is important to know and how learners should learn. As artificial intelligence technologies -- in education and beyond -- have l ed to inequitable outcomes for marginalized communities, various approaches have been developed to evaluate and mitigate AI systems disparate impact. However, we argue in this paper that the dominant paradigm of evaluating fairness on the basis of performance disparities in AI models is inadequate for confronting the structural inequities that educational AI systems (re)produce. We draw on a lens of structural injustice informed by critical theory and Black feminist scholarship to critically interrogate several widely-studied and widely-adopted categories of educational AI systems and demonstrate how educational AI technologies are bound up in and reproduce historical legacies of structural injustice and inequity, regardless of the parity of their models performance. We close with alternative visions for a more equitable future for educational AI research.
Recently, there have been increasing calls for computer science curricula to complement existing technical training with topics related to Fairness, Accountability, Transparency, and Ethics. In this paper, we present Value Card, an educational toolki t to inform students and practitioners of the social impacts of different machine learning models via deliberation. This paper presents an early use of our approach in a college-level computer science course. Through an in-class activity, we report empirical data for the initial effectiveness of our approach. Our results suggest that the use of the Value Cards toolkit can improve students understanding of both the technical definitions and trade-offs of performance metrics and apply them in real-world contexts, help them recognize the significance of considering diverse social values in the development of deployment of algorithmic systems, and enable them to communicate, negotiate and synthesize the perspectives of diverse stakeholders. Our study also demonstrates a number of caveats we need to consider when using the different variants of the Value Cards toolkit. Finally, we discuss the challenges as well as future applications of our approach.
Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society a dapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا