ﻻ يوجد ملخص باللغة العربية
In the current era, people and society have grown increasingly reliant on artificial intelligence (AI) technologies. AI has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks for oppression and calamity. Discussions about whether we should (re)trust AI have repeatedly emerged in recent years and in many quarters, including industry, academia, healthcare, services, and so on. Technologists and AI researchers have a responsibility to develop trustworthy AI systems. They have responded with great effort to design more responsible AI algorithms. However, existing technical solutions are narrow in scope and have been primarily directed towards algorithms for scoring or classification tasks, with an emphasis on fairness and unwanted bias. To build long-lasting trust between AI and human beings, we argue that the key is to think beyond algorithmic fairness and connect major aspects of AI that potentially cause AIs indifferent behavior. In this survey, we provide a systematic framework of Socially Responsible AI Algorithms that aims to examine the subjects of AI indifference and the need for socially responsible AI algorithms, define the objectives, and introduce the means by which we may achieve these objectives. We further discuss how to leverage this framework to improve societal well-being through protection, information, and prevention/mitigation.
There have been increasing concerns about Artificial Intelligence (AI) due to its unfathomable potential power. To make AI address ethical challenges and shun undesirable outcomes, researchers proposed to develop socially responsible AI (SRAI). One o
The history of science and technology shows that seemingly innocuous developments in scientific theories and research have enabled real-world applications with significant negative consequences for humanity. In order to ensure that the science and te
Measurement of social phenomena is everywhere, unavoidably, in sociotechnical systems. This is not (only) an academic point: Fairness-related harms emerge when there is a mismatch in the measurement process between the thing we purport to be measurin
Ethics in AI becomes a global topic of interest for both policymakers and academic researchers. In the last few years, various research organizations, lawyers, think tankers and regulatory bodies get involved in developing AI ethics guidelines and pr
The development of AI applications is a multidisciplinary effort, involving multiple roles collaborating with the AI developers, an umbrella term we use to include data scientists and other AI-adjacent roles on the same team. During these collaborati