ﻻ يوجد ملخص باللغة العربية
The parity of the number of elementary excitations present in a quantum system provides important insights into its physical properties. Parity measurements are used, for example, to tomographically reconstruct quantum states or to determine if a decay of an excitation has occurred, information which can be used for quantum error correction in computation or communication protocols. Here we demonstrate a versatile parity detector for propagating microwaves, which distinguishes between radiation fields containing an even or odd number n of photons, both in a single-shot measurement and without perturbing the parity of the detected field. We showcase applications of the detector for direct Wigner tomography of propagating microwaves and heralded generation of Schrodinger cat states. This parity detection scheme is applicable over a broad frequency range and may prove useful, for example, for heralded or fault-tolerant quantum communication protocols.
The ability to nondestructively detect the presence of a single, traveling photon has been a long-standing goal in optics, with applications in quantum information and measurement. Realising such a detector is complicated by the fact that photon-phot
We propose a simple circuit quantum electrodynamics (QED) experiment to test the generation of entanglement between two superconducting qubits. Instead of the usual cavity QED picture, we study qubits which are coupled to an open transmission line an
Squeezed light finds many important applications in quantum information science and quantum metrology, and has been produced in a variety of physical systems involving optical nonlinear processes. Here, we show how a nonlinear magnetostrictive intera
We study a parametrically-driven nanomechanical resonator capacitively coupled to a microwave cavity. If the nanoresonator can be cooled to near its quantum ground state then quantum squeezing of a quadrature of the nanoresonator motion becomes feasi
We apply quantum trajectory techniques to analyze a realistic set-up of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We dis