ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum nondemolition detection of a propagating microwave photon

206   0   0.0 ( 0 )
 نشر من قبل Lars Tornberg
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to nondestructively detect the presence of a single, traveling photon has been a long-standing goal in optics, with applications in quantum information and measurement. Realising such a detector is complicated by the fact that photon-photon interactions are typically very weak. At microwave frequencies, very strong effective photon-photon interactions in a waveguide have recently been demonstrated. Here we show how this type of interaction can be used to realize a quantum nondemolition measurement of a single propagating microwave photon. The scheme we propose uses a chain of solid-state 3-level systems (transmons), cascaded through circulators which suppress photon backscattering. Our theoretical analysis shows that microwave-photon detection with fidelity around 90% can be realized with existing technologies.

قيم البحث

اقرأ أيضاً

The parity of the number of elementary excitations present in a quantum system provides important insights into its physical properties. Parity measurements are used, for example, to tomographically reconstruct quantum states or to determine if a dec ay of an excitation has occurred, information which can be used for quantum error correction in computation or communication protocols. Here we demonstrate a versatile parity detector for propagating microwaves, which distinguishes between radiation fields containing an even or odd number n of photons, both in a single-shot measurement and without perturbing the parity of the detected field. We showcase applications of the detector for direct Wigner tomography of propagating microwaves and heralded generation of Schrodinger cat states. This parity detection scheme is applicable over a broad frequency range and may prove useful, for example, for heralded or fault-tolerant quantum communication protocols.
We apply quantum trajectory techniques to analyze a realistic set-up of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We dis cuss the main characteristics of the jump trajectories and relate them to the expected outcomes (clicks) of a fluorescence measurement using the resistor as a nanocalorimeter. As the main practical outcome we present a model that predicts the time-domain response of a realistic calorimeter subject to single microwave photons, incorporating the intrinsic noise due to the fundamental thermal fluctuations of the absorber and finite bandwidth of a thermometer.
We propose a two-qubit quantum logic gate between a superconducting atom and a propagating microwave photon. The atomic qubit is encoded on its lowest two levels and the photonic qubit is encoded on its carrier frequencies. The gate operation complet es deterministically upon reflection of a photon, and various two-qubit gates (SWAP, $sqrt{rm SWAP}$, and Identity) are realized through {it in situ} control of the drive field. The proposed gate is applicable to construction of a network of superconducting atoms, which enables gate operations between non-neighboring atoms.
We propose a simple circuit quantum electrodynamics (QED) experiment to test the generation of entanglement between two superconducting qubits. Instead of the usual cavity QED picture, we study qubits which are coupled to an open transmission line an d get entangled by the exchange of propagating photons. We compute their dynamics using a full quantum field theory beyond the rotating-wave approximation and explore a variety of regimes which go from a weak coupling to the recently introduced ultrastrong coupling regime. Due to the existence of single photons traveling along the line with finite speed, our theory shows a light cone dividing the spacetime in two different regions. In one region, entanglement may only arise due to correlated vacuum fluctuations, while in the other the contribution from exchanged photons shows up.
The fields of opto- and electromechanics have facilitated numerous advances in the areas of precision measurement and sensing, ultimately driving the studies of mechanical systems into the quantum regime. To date, however, the quantization of the mec hanical motion and the associated quantum jumps between phonon states remains elusive. For optomechanical systems, the coupling to the environment was shown to preclude the detection of the mechanical mode occupation, unless strong single photon optomechanical coupling is achieved. Here, we propose and analyse an electromechanical setup, which allows to overcome this limitation and resolve the energy levels of a mechanical oscillator. We find that the heating of the membrane, caused by the interaction with the environment and unwanted couplings, can be suppressed for carefully designed electromechanical systems. The results suggest that phonon number measurement is within reach for modern electromechanical setups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا