ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanomechanical squeezing with detection via a microwave cavity

250   0   0.0 ( 0 )
 نشر من قبل Matthew Woolley
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a parametrically-driven nanomechanical resonator capacitively coupled to a microwave cavity. If the nanoresonator can be cooled to near its quantum ground state then quantum squeezing of a quadrature of the nanoresonator motion becomes feasible. We consider the adiabatic limit in which the cavity mode is slaved to the nanoresonator mode. By driving the cavity on its red-detuned sideband, the squeezing can be coupled into the microwave field at the cavity resonance. The red-detuned sideband drive is also compatible with the goal of ground state cooling. Squeezing of the output microwave field may be inferred using a technique similar to that used to infer squeezing of the field produced by a Josephson parametric amplifier, and subsequently, squeezing of the nanoresonator motion may be inferred. We have calculated the output field microwave squeezing spectra and related this to squeezing of the nanoresonator motion, both at zero and finite temperature. Driving the cavity on the blue-detuned sideband, and on both the blue and red sidebands, have also been considered within the same formalism.



قيم البحث

اقرأ أيضاً

317 - Jie Li , Yi-Pu Wang , J. Q. You 2021
Squeezed light finds many important applications in quantum information science and quantum metrology, and has been produced in a variety of physical systems involving optical nonlinear processes. Here, we show how a nonlinear magnetostrictive intera ction in a ferrimagnet in cavity magnomechanics can be used to reduce quantum noise of the electromagnetic field. We show optimal parameter regimes where a substantial and stationary squeezing of the microwave output field can be achieved. The scheme can be realized within the reach of current technology in cavity electromagnonics and magnomechanics. Our work provides a new and practicable approach for producing squeezed vacuum states of electromagnetic fields, and may find promising applications in quantum information processing and quantum metrology.
Cavity-enhanced radiation pressure coupling between optical and mechanical degrees of freedom allows quantum-limited position measurements and gives rise to dynamical backaction enabling amplification and cooling of mechanical motion. Here we demonst rate purely dispersive coupling of high Q nanomechanical oscillators to an ultra-high finesse optical microresonator via its evanescent field, extending cavity optomechanics to nanomechanical oscillators. Dynamical backaction mediated by the optical dipole force is observed, leading to laser-like coherent nanomechanical oscillations solely due to radiation pressure. Moreover, sub-fm/Hz^(1/2) displacement sensitivity is achieved, with a measurement imprecision equal to the standard quantum limit (SQL), which coincides with the nanomechanical oscillators zero-point fluctuations. The achievement of an imprecision at the SQL and radiation-pressure dynamical backaction for nanomechanical oscillators may have implications not only for detecting quantum phenomena in mechanical systems, but also for a variety of other precision experiments. Owing to the flexibility of the near-field coupling approach, it can be readily extended to a diverse set of nanomechanical oscillators and particularly provides a route to experiments where radiation pressure quantum backaction dominates at room temperature, enabling ponderomotive squeezing or QND measurements.
152 - C. Leroux , L. C. G. Govia , 2017
We present and analyze a method where parametric (two-photon) driving of a cavity is used to exponentially enhance the light-matter coupling in a generic cavity QED setup, with time-dependent control. Our method allows one to enhance weak-coupling sy stems, such that they enter the strong coupling regime (where the coupling exceeds dissipative rates) and even the ultra-strong coupling regime (where the coupling is comparable to the cavity frequency). As an example, we show how the scheme allows one to use a weak-coupling system to adiabatically prepare the highly entangled ground state of the ultra-strong coupling system. The resulting state could be used for remote entanglement applications.
100 - G. Arnold , M. Wulf , S. Barzanjeh 2020
Practical quantum networks require low-loss and noise-resilient optical interconnects as well as non-Gaussian resources for entanglement distillation and distributed quantum computation. The latter could be provided by superconducting circuits but - despite growing efforts and rapid progress - existing solutions to interface the microwave and optical domains lack either scalability or efficiency, and in most cases the conversion noise is not known. In this work we utilize the unique opportunities of silicon photonics, cavity optomechanics and superconducting circuits to demonstrate a fully integrated, coherent transducer connecting the microwave X and the telecom S bands with a total (internal) bidirectional transduction efficiency of 1.2% (135 %) at millikelvin temperatures. The coupling relies solely on the radiation pressure interaction mediated by the femtometer-scale motion of two silicon nanobeams and includes an optomechanical gain of about 20 dB. The chip-scale device is fabricated from CMOS compatible materials and achieves a V$_pi$ as low as 16 $mu$V for sub-nanowatt pump powers. Such power-efficient, ultra-sensitive and highly integrated hybrid interconnects might find applications ranging from quantum communication and RF receivers to magnetic resonance imaging.
We propose a scheme able to generate stationary continuous variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a micro-mechanical resonator. We show that when both cavities are intensely driv en one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and opto-mechanical entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا