ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum trajectory analysis of single microwave photon detection by nanocalorimetry

91   0   0.0 ( 0 )
 نشر من قبل Bayan Karimi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply quantum trajectory techniques to analyze a realistic set-up of a superconducting qubit coupled to a heat bath formed by a resistor, a system that yields explicit expressions of the relevant transition rates to be used in the analysis. We discuss the main characteristics of the jump trajectories and relate them to the expected outcomes (clicks) of a fluorescence measurement using the resistor as a nanocalorimeter. As the main practical outcome we present a model that predicts the time-domain response of a realistic calorimeter subject to single microwave photons, incorporating the intrinsic noise due to the fundamental thermal fluctuations of the absorber and finite bandwidth of a thermometer.



قيم البحث

اقرأ أيضاً

The ability to nondestructively detect the presence of a single, traveling photon has been a long-standing goal in optics, with applications in quantum information and measurement. Realising such a detector is complicated by the fact that photon-phot on interactions are typically very weak. At microwave frequencies, very strong effective photon-photon interactions in a waveguide have recently been demonstrated. Here we show how this type of interaction can be used to realize a quantum nondemolition measurement of a single propagating microwave photon. The scheme we propose uses a chain of solid-state 3-level systems (transmons), cascaded through circulators which suppress photon backscattering. Our theoretical analysis shows that microwave-photon detection with fidelity around 90% can be realized with existing technologies.
Single-photon detection is an essential component in many experiments in quantum optics, but remains challenging in the microwave domain. We realize a quantum non-demolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in single shot, we reach an internal photon detection fidelity of 71%, limited by the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum non-demolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.
Single-photon sources are of great interest because they are key elements in different promising applications of quantum technologies. Here we demonstrate a highly efficient tunable on-demand microwave single-photon source based on a transmon qubit w ith the intrinsic emission efficiency above 98$%$. The high efficiency ensures a negligible pure dephasing rate and the necessary condition for generation of indistinguishable photons. We provide an extended discussion and analysis of the efficiency of the photon generation. To further experimentally confirm the single-photon property of the source, correlation functions of the emission field are also measured using linear detectors with a GPU-enhanced signal processing technique. Our results experimentally demonstrate that frequency tunability and negligible pure dephasing rate can be achieved simultaneously and show that such a tunable single-photon source can be good for various practical applications in quantum communication, simulations and information processing in the microwave regime.
High efficiency single photon detection is an interesting problem for many areas of physics, including low temperature measurement, quantum information science and particle physics. For optical photons, there are many examples of devices capable of d etecting single photons with high efficiency. However reliable single photon detection of microwaves is very difficult, principally due to their low energy. In this paper we present the theory of a cascade amplifier operating in the microwave regime that has an optimal quantum efficiency of 93%. The device uses a microwave photon to trigger the stimulated emission of a sequence of atoms where the energy transition is readily detectable. A detailed description of the detectors operation and some discussion of the potential limitations of the detector are presented.
173 - Li-Ping Yang , Zubin Jacob 2019
The quantum critical detector (QCD), recently introduced for weak-signal amplification [Opt. Express 27, 10482 (2019)], functions by exploiting high sensitivity near the phase transition point of first-order quantum phase transitions. We contrast the behavior of the first-order as well as the second-order quantum phase transitions (QPTs) in the detector. We find that the giant sensitivity to a weak input signal, which can be utilized for quantum amplification, only exists in first-order QPTs. We define two new magnetic order parameters to quantitatively characterize the first-order QPT of the interacting spins in the detector. We also introduce the Husimi $Q$-functions as a powerful tool to show the fundamental change in the ground-state wave function of the detector during the QPTs and especially, the intrinsic dynamical change within the detector during a quantum critical amplification. We explicitly show the high figures of merit of the QCD via the quantum gain and signal-to-quantum noise ratio. Specifically, we predict the existence of a universal first-order QPT in the interacting spin system resulting from two competing ferromagnetic orders. Our results motivate new designs of weak signal detectors by engineering first-order QPTs, which are of fundamental significance in the search for new particles, quantum metrology, and information science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا