ترغب بنشر مسار تعليمي؟ اضغط هنا

McKean-Vlasov equations on infinite-dimensional Hilbert spaces with irregular drift and additive fractional noise

281   0   0.0 ( 0 )
 نشر من قبل Martin Bauer
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper establishes results on the existence and uniqueness of solutions to McKean-Vlasov equations, also called mean-field stochastic differential equations, in an infinite-dimensional Hilbert space setting with irregular drift. Here, McKean-Vlasov equations with additive noise are considered where the driving noise is cylindrical (fractional) Brownian motion. The existence and uniqueness of weak solutions are established for drift coefficients that are merely measurable, bounded, and continuous in the law variable. In particular, the drift coefficient is allowed to be singular in the spatial variable. Further, we discuss existence of a pathwisely unique strong solution as well as Malliavin differentiability.



قيم البحث

اقرأ أيضاً

74 - Maylis Varvenne 2019
In this paper, we establish concentration inequalities both for functionals of the whole solution on an interval [0, T ] of an additive SDE driven by a fractional Brownian motion with Hurst parameter H $in$ (0, 1) and for functionals of discrete-time observations of this process. Then, we apply this general result to specific functionals related to discrete and continuous-time occupation measures of the process.
We consider conditional McKean-Vlasov stochastic differential equations (SDEs), such as the ones arising in the large-system limit of mean field games and particle systems with mean field interactions when common noise is present. The conditional tim e-marginals of the solutions to these SDEs satisfy non-linear stochastic partial differential equations (SPDEs) of the second order, whereas the laws of the conditional time-marginals follow Fokker-Planck equations on the space of probability measures. We prove two superposition principles: The first establishes that any solution of the SPDE can be lifted to a solution of the conditional McKean-Vlasov SDE, and the second guarantees that any solution of the Fokker-Planck equation on the space of probability measures can be lifted to a solution of the SPDE. We use these results to obtain a mimicking theorem which shows that the conditional time-marginals of an Ito process can be emulated by those of a solution to a conditional McKean-Vlasov SDE with Markovian coefficients. This yields, in particular, a tool for converting open-loop controls into Markovian ones in the context of controlled McKean-Vlasov dynamics.
97 - Fabien Panloup 2019
In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied.
182 - Rene Carmona 2013
The purpose of this paper is to provide a detailed probabilistic analysis of the optimal control of nonlinear stochastic dynamical systems of the McKean Vlasov type. Motivated by the recent interest in mean field games, we highlight the connection an d the differences between the two sets of problems. We prove a new version of the stochastic maximum principle and give sufficient conditions for existence of an optimal control. We also provide examples for which our sufficient conditions for existence of an optimal solution are satisfied. Finally we show that our solution to the control problem provides approximate equilibria for large stochastic games with mean field interactions.
We consider a stochastic differential equation with additive fractional noise with Hurst parameter $H>1/2$, and a non-linear drift depending on an unknown parameter. We show the Local Asymptotic Normality property (LAN) of this parametric model with rate $sqrt{tau}$ as $taurightarrow infty$, when the solution is observed continuously on the time interval $[0,tau]$. The proof uses ergodic properties of the equation and a Girsanov-type transform. We analyse the particular case of the fractional Ornstein-Uhlenbeck process and show that the Maximum Likelihood Estimator is asymptotically efficient in the sense of the Minimax Theorem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا