ترغب بنشر مسار تعليمي؟ اضغط هنا

LAN property for stochastic differential equations with additive fractional noise and continuous time observation

123   0   0.0 ( 0 )
 نشر من قبل Eulalia Nualart
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a stochastic differential equation with additive fractional noise with Hurst parameter $H>1/2$, and a non-linear drift depending on an unknown parameter. We show the Local Asymptotic Normality property (LAN) of this parametric model with rate $sqrt{tau}$ as $taurightarrow infty$, when the solution is observed continuously on the time interval $[0,tau]$. The proof uses ergodic properties of the equation and a Girsanov-type transform. We analyse the particular case of the fractional Ornstein-Uhlenbeck process and show that the Maximum Likelihood Estimator is asymptotically efficient in the sense of the Minimax Theorem.

قيم البحث

اقرأ أيضاً

74 - Maylis Varvenne 2019
In this paper, we establish concentration inequalities both for functionals of the whole solution on an interval [0, T ] of an additive SDE driven by a fractional Brownian motion with Hurst parameter H $in$ (0, 1) and for functionals of discrete-time observations of this process. Then, we apply this general result to specific functionals related to discrete and continuous-time occupation measures of the process.
97 - Fabien Panloup 2019
In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied.
We present an innovating sensitivity analysis for stochastic differential equations: We study the sensitivity, when the Hurst parameter~$H$ of the driving fractional Brownian motion tends to the pure Brownian value, of probability distributions of sm ooth functionals of the trajectories of the solutions ${X^H_t}_{tin mathbb{R}_+}$ and of the Laplace transform of the first passage time of $X^H$ at a given threshold. Our technique requires to extend already known Gaussian estimates on the density of $X^H_t$ to estimates with constants which are uniform w.r.t. $t$ in in the whole half-line $R_+-{0}$ and $H$ when $H$ tends to~$tfrac{1}{2}$.
It is well-known that for a one dimensional stochastic differential equation driven by Brownian noise, with coefficient functions satisfying the assumptions of the Yamada-Watanabe theorem cite{yamada1,yamada2} and the Feller test for explosions cite{ feller51,feller54}, there exists a unique stationary distribution with respect to the Markov semigroup of transition probabilities. We consider systems on a restricted domain $D$ of the phase space $mathbb{R}$ and study the rate of convergence to the stationary distribution. Using a geometrical approach that uses the so called {it free energy function} on the density function space, we prove that the density functions, which are solutions of the Fokker-Planck equation, converge to the stationary density function exponentially under the Kullback-Leibler {divergence}, thus also in the total variation norm. The results show that there is a relation between the Bakry-Emery curvature dimension condition and the dissipativity condition of the transformed system under the Fisher-Lamperti transformation. Several applications are discussed, including the Cox-Ingersoll-Ross model and the Ait-Sahalia model in finance and the Wright-Fisher model in population genetics.
In this paper, we consider a multidimensional ergodic diffusion with jumps driven by a Brownian motion and a Poisson random measure associated with a pure-jump Levy process with finite Levy measure, whose drift coefficient depends on an unknown param eter. Considering the process discretely observed at high frequency, we derive the local asymptotic normality (LAN) property.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا