ترغب بنشر مسار تعليمي؟ اضغط هنا

Forward-Backward Stochastic Differential Equations and Controlled McKean Vlasov Dynamics

156   0   0.0 ( 0 )
 نشر من قبل Francois Delarue
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Rene Carmona




اسأل ChatGPT حول البحث

The purpose of this paper is to provide a detailed probabilistic analysis of the optimal control of nonlinear stochastic dynamical systems of the McKean Vlasov type. Motivated by the recent interest in mean field games, we highlight the connection and the differences between the two sets of problems. We prove a new version of the stochastic maximum principle and give sufficient conditions for existence of an optimal control. We also provide examples for which our sufficient conditions for existence of an optimal solution are satisfied. Finally we show that our solution to the control problem provides approximate equilibria for large stochastic games with mean field interactions.



قيم البحث

اقرأ أيضاً

The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.
83 - Meiqi Liu , Huijie Qiao 2020
The work concerns a class of path-dependent McKean-Vlasov stochastic differential equations with unknown parameters. First, we prove the existence and uniqueness of these equations under non-Lipschitz conditions. Second, we construct maximum likeliho od estimators of these parameters and then discuss their strong consistency. Third, a numerical simulation method for the class of path-dependent McKean-Vlasov stochastic differential equations is offered. Moreover, we estimate the errors between solutions of these equations and that of their numerical equations. Finally, we give an example to explain our result.
In this paper, we consider the averaging principle for a class of McKean-Vlasov stochastic differential equations with slow and fast time-scales. Under some proper assumptions on the coefficients, we first prove that the slow component strongly conve rges to the solution of the corresponding averaged equation with convergence order $1/3$ using the approach of time discretization. Furthermore, under stronger regularity conditions on the coefficients, we use the technique of Poisson equation to improve the order to $1/2$, which is the optimal order of strong convergence in general.
This paper studies the convergence of the tamed Euler-Maruyama (EM) scheme for a class of McKean-Vlasov neutral stochastic differential delay equations (MV-NSDDEs) that the drift coefficients satisfy the super-linear growth condition. We provide the existence and uniqueness of strong solutions to MV-NSDDEs. Then, we use a stochastic particle method, which is based upon the theory of the propagation of chaos between particle system and the original MV-NSDDE, to deal with the approximation of the law. Moreover, we obtain the convergence rate of tamed EM scheme with respect to the corresponding particle system. Combining the result of propagation of chaos and the convergence rate of the numerical solution to the particle system, we get a convergence error between the numerical solution and exact solution of the original MV-NSDDE in the stepsize and number of particles.
82 - Daniel Lacker 2016
This paper rigorously connects the problem of optimal control of McKean-Vlasov dynamics with large systems of interacting controlled state processes. Precisely, the empirical distributions of near-optimal control-state pairs for the $n$-state systems , as $n$ tends to infinity, admit limit points in distribution (if the objective functions are suitably coercive), and every such limit is supported on the set of optimal control-state pairs for the McKean-Vlasov problem. Conversely, any distribution on the set of optimal control-state pairs for the McKean-Vlasov problem can be realized as a limit in this manner. Arguments are based on controlled martingale problems, which lend themselves naturally to existence proofs; along the way it is shown that a large class of McKean-Vlasov control problems admit optimal Markovian controls.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا