ترغب بنشر مسار تعليمي؟ اضغط هنا

A general drift estimation procedure for stochastic differential equations with additive fractional noise

98   0   0.0 ( 0 )
 نشر من قبل Maylis Varvenne
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Fabien Panloup




اسأل ChatGPT حول البحث

In this paper we consider the drift estimation problem for a general differential equation driven by an additive multidimensional fractional Brownian motion, under ergodic assumptions on the drift coefficient. Our estimation procedure is based on the identification of the invariant measure, and we provide consistency results as well as some information about the convergence rate. We also give some examples of coefficients for which the identifiability assumption for the invariant measure is satisfied.



قيم البحث

اقرأ أيضاً

74 - Maylis Varvenne 2019
In this paper, we establish concentration inequalities both for functionals of the whole solution on an interval [0, T ] of an additive SDE driven by a fractional Brownian motion with Hurst parameter H $in$ (0, 1) and for functionals of discrete-time observations of this process. Then, we apply this general result to specific functionals related to discrete and continuous-time occupation measures of the process.
In this paper we consider the nonparametric functional estimation of the drift of Gaussian processes using Paley-Wiener and Karhunen-Lo`eve expansions. We construct efficient estimators for the drift of such processes, and prove their minimaxity usin g Bayes estimators. We also construct superefficient estimators of Stein type for such drifts using the Malliavin integration by parts formula and stochastic analysis on Gaussian space, in which superharmonic functionals of the process paths play a particular role. Our results are illustrated by numerical simulations and extend the construction of James-Stein type estimators for Gaussian processes by Berger and Wolper.
Stochastic differential equations and stochastic dynamics are good models to describe stochastic phenomena in real world. In this paper, we study N independent stochastic processes Xi(t) with real entries and the processes are determined by the stoch astic differential equations with drift term relying on some random effects. We obtain the Girsanov-type formula of the stochastic differential equation driven by Fractional Brownian Motion through kernel transformation. Under some assumptions of the random effect, we estimate the parameter estimators by the maximum likelihood estimation and give some numerical simulations for the discrete observations. Results show that for the different H, the parameter estimator is closer to the true value as the amount of data increases.
80 - Chunhao Cai , Min Zhang 2020
This paper is devoted to parameter estimation of the mixed fractional Ornstein-Uhlenbeck process with a drift. Large sample asymptotical properties of the Maximum Likelihood Estimator is deduced using the Laplace transform computations or the Cameron-Martin formula with extra part from cite{CK19}
We study a nonparametric Bayesian approach to estimation of the volatility function of a stochastic differential equation driven by a gamma process. The volatility function is modelled a priori as piecewise constant, and we specify a gamma prior on i ts values. This leads to a straightforward procedure for posterior inference via an MCMC procedure. We give theoretical performance guarantees (contraction rates for the posterior) for the Bayesian estimate in terms of the regularity of the unknown volatility function. We illustrate the method on synthetic and real data examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا