ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Solutions of Mean-Field SDEs with irregular expectation functional in the drift

186   0   0.0 ( 0 )
 نشر من قبل Martin Bauer
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze multi-dimensional mean-field stochastic differential equations where the drift depends on the law in form of a Lebesgue integral with respect to the pushforward measure of the solution. We show existence and uniqueness of Malliavin differentiable strong solutions for irregular drift coefficients, which in particular include the case where the drift depends on the cumulative distribution function of the solution. Moreover, we examine the solution as a function in its initial condition and introduce sufficient conditions on the drift to guarantee differentiability. Under these assumptions we then show that the Bismut-Elworthy-Li formula proposed in Bauer et al. (2018) holds in a strong sense, i.e. we give a probabilistic representation of the strong derivative with respect to the initial condition of expectation functionals of strong solutions to our type of mean-field equations in one-dimension.



قيم البحث

اقرأ أيضاً

We present a well-posedness result for strong solutions of one-dimensional stochastic differential equations (SDEs) of the form $$mathrm{d} X= u(omega,t,X), mathrm{d} t + frac12 sigma(omega,t,X)sigma(omega,t,X),mathrm{d} t + sigma(omega,t,X) , mathrm {d}W(t), $$ where the drift coefficient $u$ is random and irregular. The random and regular noise coefficient $sigma$ may vanish. The main contribution is a pathwise uniqueness result under the assumptions that $u$ belongs to $L^p(Omega; L^infty([0,T];dot{H}^1(mathbb{R})))$ for any finite $pge 1$, $mathbb{E}left|u(t)-u(0)right|_{dot{H}^1(mathbb{R})}^2 to 0$ as $tdownarrow 0$, and $u$ satisfies the one-sided gradient bound $partial_x u(omega,t,x) le K(omega, t)$, where the process $K(omega,t )>0$ exhibits an exponential moment bound of the form $mathbb{E} expBig(pint_t^T K(s),mathrm{d} sBig) lesssim {t^{-2p}}$ for small times $t$, for some $pge1$. This study is motivated by ongoing work on the well-posedness of the stochastic Hunter--Saxton equation, a stochastic perturbation of a nonlinear transport equation that arises in the modelling of the director field of a nematic liquid crystal. In this context, the one-sided bound acts as a selection principle for dissipative weak solutions of the stochastic partial differential equation (SPDE).
We examine existence and uniqueness of strong solutions of multi-dimensional mean-field stochastic differential equations with irregular drift coefficients. Furthermore, we establish Malliavin differentiability of the solution and show regularity pro perties such as Sobolev differentiability in the initial data as well as Holder continuity in time and the initial data. Using the Malliavin and Sobolev differentiability we formulate a Bismut-Elworthy-Li type formula for mean-field stochastic differential equations, i.e. a probabilistic representation of the first order derivative of an expectation functional with respect to the initial condition.
In this paper we prove the existence of strong solutions to a SDE with a generalized drift driven by a multidimensional fractional Brownian motion for small Hurst parameters H<1/2. Here the generalized drift is given as the local time of the unknown solution process, which can be considered an extension of the concept of a skew Brownian motion to the case of fractional Brownian motion. Our approach for the construction of strong solutions is new and relies on techniques from Malliavin calculus combined with a local time variational calculus argument.
99 - Guohuan Zhao 2020
We prove the existence and uniqueness for SDEs with random and irregular coefficients through solving a backward stochastic Kolmogorov equation and using a modified Zvonkins type transformation.
We obtain $T_2(C)$ for stochastic differential equations with Dini continuous drift and $T_1(C)$ stochastic differential equations with singular coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا