ترغب بنشر مسار تعليمي؟ اضغط هنا

Existence and Regularity of Solutions to Multi-Dimensional Mean-Field Stochastic Differential Equations with Irregular Drift

144   0   0.0 ( 0 )
 نشر من قبل Martin Bauer
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine existence and uniqueness of strong solutions of multi-dimensional mean-field stochastic differential equations with irregular drift coefficients. Furthermore, we establish Malliavin differentiability of the solution and show regularity properties such as Sobolev differentiability in the initial data as well as Holder continuity in time and the initial data. Using the Malliavin and Sobolev differentiability we formulate a Bismut-Elworthy-Li type formula for mean-field stochastic differential equations, i.e. a probabilistic representation of the first order derivative of an expectation functional with respect to the initial condition.

قيم البحث

اقرأ أيضاً

We present a well-posedness result for strong solutions of one-dimensional stochastic differential equations (SDEs) of the form $$mathrm{d} X= u(omega,t,X), mathrm{d} t + frac12 sigma(omega,t,X)sigma(omega,t,X),mathrm{d} t + sigma(omega,t,X) , mathrm {d}W(t), $$ where the drift coefficient $u$ is random and irregular. The random and regular noise coefficient $sigma$ may vanish. The main contribution is a pathwise uniqueness result under the assumptions that $u$ belongs to $L^p(Omega; L^infty([0,T];dot{H}^1(mathbb{R})))$ for any finite $pge 1$, $mathbb{E}left|u(t)-u(0)right|_{dot{H}^1(mathbb{R})}^2 to 0$ as $tdownarrow 0$, and $u$ satisfies the one-sided gradient bound $partial_x u(omega,t,x) le K(omega, t)$, where the process $K(omega,t )>0$ exhibits an exponential moment bound of the form $mathbb{E} expBig(pint_t^T K(s),mathrm{d} sBig) lesssim {t^{-2p}}$ for small times $t$, for some $pge1$. This study is motivated by ongoing work on the well-posedness of the stochastic Hunter--Saxton equation, a stochastic perturbation of a nonlinear transport equation that arises in the modelling of the director field of a nematic liquid crystal. In this context, the one-sided bound acts as a selection principle for dissipative weak solutions of the stochastic partial differential equation (SPDE).
We analyze multi-dimensional mean-field stochastic differential equations where the drift depends on the law in form of a Lebesgue integral with respect to the pushforward measure of the solution. We show existence and uniqueness of Malliavin differe ntiable strong solutions for irregular drift coefficients, which in particular include the case where the drift depends on the cumulative distribution function of the solution. Moreover, we examine the solution as a function in its initial condition and introduce sufficient conditions on the drift to guarantee differentiability. Under these assumptions we then show that the Bismut-Elworthy-Li formula proposed in Bauer et al. (2018) holds in a strong sense, i.e. we give a probabilistic representation of the strong derivative with respect to the initial condition of expectation functionals of strong solutions to our type of mean-field equations in one-dimension.
In [5] the authors obtained Mean-Field backward stochastic differential equations (BSDE) associated with a Mean-field stochastic differential equation (SDE) in a natural way as limit of some highly dimensional system of forward and backward SDEs, cor responding to a large number of ``particles (or ``agents). The objective of the present paper is to deepen the investigation of such Mean-Field BSDEs by studying them in a more general framework, with general driver, and to discuss comparison results for them. In a second step we are interested in partial differential equations (PDE) whose solutions can be stochastically interpreted in terms of Mean-Field BSDEs. For this we study a Mean-Field BSDE in a Markovian framework, associated with a Mean-Field forward equation. By combining classical BSDE methods, in particular that of ``backward semigroups introduced by Peng [14], with specific arguments for Mean-Field BSDEs we prove that this Mean-Field BSDE describes the viscosity solution of a nonlocal PDE. The uniqueness of this viscosity solution is obtained for the space of continuous functions with polynomial growth. With the help of an example it is shown that for the nonlocal PDEs associated to Mean-Field BSDEs one cannot expect to have uniqueness in a larger space of continuous functions.
The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.
This paper investigates a time-dependent multidimensional stochastic differential equation with drift being a distribution in a suitable class of Sobolev spaces with negative derivation order. This is done through a careful analysis of the correspond ing Kolmogorov equation whose coefficient is a distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا