ﻻ يوجد ملخص باللغة العربية
We present a well-posedness result for strong solutions of one-dimensional stochastic differential equations (SDEs) of the form $$mathrm{d} X= u(omega,t,X), mathrm{d} t + frac12 sigma(omega,t,X)sigma(omega,t,X),mathrm{d} t + sigma(omega,t,X) , mathrm{d}W(t), $$ where the drift coefficient $u$ is random and irregular. The random and regular noise coefficient $sigma$ may vanish. The main contribution is a pathwise uniqueness result under the assumptions that $u$ belongs to $L^p(Omega; L^infty([0,T];dot{H}^1(mathbb{R})))$ for any finite $pge 1$, $mathbb{E}left|u(t)-u(0)right|_{dot{H}^1(mathbb{R})}^2 to 0$ as $tdownarrow 0$, and $u$ satisfies the one-sided gradient bound $partial_x u(omega,t,x) le K(omega, t)$, where the process $K(omega,t )>0$ exhibits an exponential moment bound of the form $mathbb{E} expBig(pint_t^T K(s),mathrm{d} sBig) lesssim {t^{-2p}}$ for small times $t$, for some $pge1$. This study is motivated by ongoing work on the well-posedness of the stochastic Hunter--Saxton equation, a stochastic perturbation of a nonlinear transport equation that arises in the modelling of the director field of a nematic liquid crystal. In this context, the one-sided bound acts as a selection principle for dissipative weak solutions of the stochastic partial differential equation (SPDE).
We examine existence and uniqueness of strong solutions of multi-dimensional mean-field stochastic differential equations with irregular drift coefficients. Furthermore, we establish Malliavin differentiability of the solution and show regularity pro
In this paper we study the existence and uniqueness of the random periodic solution for a stochastic differential equation with a one-sided Lipschitz condition (also known as monotonicity condition) and the convergence of its numerical approximation
We analyze multi-dimensional mean-field stochastic differential equations where the drift depends on the law in form of a Lebesgue integral with respect to the pushforward measure of the solution. We show existence and uniqueness of Malliavin differe
This paper investigates a time-dependent multidimensional stochastic differential equation with drift being a distribution in a suitable class of Sobolev spaces with negative derivation order. This is done through a careful analysis of the correspond
In this paper we present a scheme for the numerical solution of one-dimensional stochastic differential equations (SDEs) whose drift belongs to a fractional Sobolev space of negative regularity (a subspace of Schwartz distributions). We obtain a rate