ﻻ يوجد ملخص باللغة العربية
In this paper we prove the existence of strong solutions to a SDE with a generalized drift driven by a multidimensional fractional Brownian motion for small Hurst parameters H<1/2. Here the generalized drift is given as the local time of the unknown solution process, which can be considered an extension of the concept of a skew Brownian motion to the case of fractional Brownian motion. Our approach for the construction of strong solutions is new and relies on techniques from Malliavin calculus combined with a local time variational calculus argument.
We analyze multi-dimensional mean-field stochastic differential equations where the drift depends on the law in form of a Lebesgue integral with respect to the pushforward measure of the solution. We show existence and uniqueness of Malliavin differe
We study distribution dependent stochastic differential equations with irregular, possibly distributional drift, driven by an additive fractional Brownian motion of Hurst parameter $Hin (0,1)$. We establish strong well-posedness under a variety of as
To extend several known centered Gaussian processes, we introduce a new centered mixed self-similar Gaussian process called the mixed generalized fractional Brownian motion, which could serve as a good model for a larger class of natural phenomena. T
In this paper, the existence and uniqueness of the distribution dependent SDEs with H{o}lder continuous drift driven by $alpha$-stable process is investigated. Moreover, by using Zvonkin type transformation, the convergence rate of Euler-Maruyama met
The mild sufficient conditions for exponential ergodicity of a Markov process, defined as the solution to SDE with a jump noise, are given. These conditions include three principal claims: recurrence condition R, topological irreducibility condition