ﻻ يوجد ملخص باللغة العربية
It is well known that the crystalline structure of the III-V nanowires (NWs) is mainly controlled by the wetting contact angle of the catalyst droplet which can be tuned by the III and V flux. In this work we present a method to control the wurtzite (WZ) or zinc-blende (ZB) structure in self-catalyzed GaAs NWs grown by molecular beam epitaxy, using in situ reflection high energy electron diffraction (RHEED) diagram analysis. Since the diffraction patterns of the ZB and WZ structures differ according to the azimuth [1-10], it is possible to follow the evolution of the intensity of specific ZB and WZ diffraction spots during the NW growth as a function of the growth parameters such as the Ga flux. By analyzing the evolution of the WZ and ZB spot intensities during some NW growths with specific changes of Ga flux, it is then possible to control the crystal structure of the NWs. ZB GaAs NWs with a controlled WZ segment have thus been realized. Using a semi-empirical model for the NW growth and our in situ RHEED measurements, the critical wetting angle of the catalyst droplet for the structural transition is deduced.
We report observation of field emission from self-catalyzed GaAs nanowires grown on Si (111). The measurements are realized inside a scanning electron microscope chamber with nano-controlled tungsten tip functioning as anode. Experimental data are an
We realize growth of self-catalyzed core-shell GaAs/GaAsP nanowires (NWs) on Si substrates using molecular-beam epitaxy. Transmission electron microscopy (TEM) of single GaAs/GaAsP NWs confirms their high crystal quality and shows domination of the z
The accurate control of the crystal phase in III-V semiconductor nanowires (NWs) is an important milestone for device applications. In this work, we present a method to select and maintain the wurtzite (WZ) crystal phase in self-assisted NWs. By choo
Defects are detrimental for optoelectronics devices, such as stacking faults can form carrier-transportation barriers, and foreign impurities (Au) with deep-energy levels can form carrier traps and non-radiative recombination centers. Here, we first
Using pulsed laser ablation with arsenic over pressure, the growth conditions for GaAs nanowires have been systematically investigated and optimized. Arsenic over pressure with As$_2$ molecules was introduced to the system by thermal decomposition of