ﻻ يوجد ملخص باللغة العربية
We realize growth of self-catalyzed core-shell GaAs/GaAsP nanowires (NWs) on Si substrates using molecular-beam epitaxy. Transmission electron microscopy (TEM) of single GaAs/GaAsP NWs confirms their high crystal quality and shows domination of the zinc-blende phase. This is further confirmed in optics of single NWs, studied using cw and time-resolved photoluminescence (PL). A detailed comparison with uncapped GaAs NWs emphasizes the effect of the GaAsP capping in suppressing the non-radiative surface states: significant PL enhancement in the core-shell structures exceeding 2000 times at 10K is observed; in uncapped NWs PL is quenched at 60K whereas single core-shell GaAs/GaAsP NWs exhibit bright emission even at room temperature. From analysis of the PL temperature dependence in both types of NW we are able to determine the main carrier escape mechanisms leading to the PL quench.
It is well known that the crystalline structure of the III-V nanowires (NWs) is mainly controlled by the wetting contact angle of the catalyst droplet which can be tuned by the III and V flux. In this work we present a method to control the wurtzite
We study the optical properties of a single core-shell GaAs-AlGaAs nanowire (grown by VLS method) using the technique of micro-photoluminescence and spatially-resolved photoluminescence imaging. We observe large linear polarization anisotropy in emission and excitation of nanowires.
We report observation of field emission from self-catalyzed GaAs nanowires grown on Si (111). The measurements are realized inside a scanning electron microscope chamber with nano-controlled tungsten tip functioning as anode. Experimental data are an
Core-shell nanowires made of Si and Ge can be grown experimentally with excellent control for different sizes of both core and shell. We have studied the structural properties of Si/Ge and Ge/Si core-shell nanowires aligned along the $[110]$ directio
Optically active gold-catalyzed ZnTe nanowires have been grown by molecular beam epitaxy, on a ZnTe(111) buffer layer, at low temperature 350degree under Te rich conditions, and at ultra-low density (from 1 to 5 nanowires per micrometer^{2}. The crys