The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.
In [5] the authors obtained Mean-Field backward stochastic differential equations (BSDE) associated with a Mean-field stochastic differential equation (SDE) in a natural way as limit of some highly dimensional system of forward and backward SDEs, cor
responding to a large number of ``particles (or ``agents). The objective of the present paper is to deepen the investigation of such Mean-Field BSDEs by studying them in a more general framework, with general driver, and to discuss comparison results for them. In a second step we are interested in partial differential equations (PDE) whose solutions can be stochastically interpreted in terms of Mean-Field BSDEs. For this we study a Mean-Field BSDE in a Markovian framework, associated with a Mean-Field forward equation. By combining classical BSDE methods, in particular that of ``backward semigroups introduced by Peng [14], with specific arguments for Mean-Field BSDEs we prove that this Mean-Field BSDE describes the viscosity solution of a nonlocal PDE. The uniqueness of this viscosity solution is obtained for the space of continuous functions with polynomial growth. With the help of an example it is shown that for the nonlocal PDEs associated to Mean-Field BSDEs one cannot expect to have uniqueness in a larger space of continuous functions.
Mathematical mean-field approaches play an important role in different fields of Physics and Chemistry, but have found in recent works also their application in Economics, Finance and Game Theory. The objective of our paper is to investigate a specia
l mean-field problem in a purely stochastic approach: for the solution $(Y,Z)$ of a mean-field backward stochastic differential equation driven by a forward stochastic differential of McKean--Vlasov type with solution $X$ we study a special approximation by the solution $(X^N,Y^N,Z^N)$ of some decoupled forward--backward equation which coefficients are governed by $N$ independent copies of $(X^N,Y^N,Z^N)$. We show that the convergence speed of this approximation is of order $1/sqrt{N}$. Moreover, our special choice of the approximation allows to characterize the limit behavior of $sqrt{N}(X^N-X,Y^N-Y,Z^N-Z)$. We prove that this triplet converges in law to the solution of some forward--backward stochastic differential equation of mean-field type, which is not only governed by a Brownian motion but also by an independent Gaussian field.
The purpose of this paper is to provide a detailed probabilistic analysis of the optimal control of nonlinear stochastic dynamical systems of the McKean Vlasov type. Motivated by the recent interest in mean field games, we highlight the connection an
d the differences between the two sets of problems. We prove a new version of the stochastic maximum principle and give sufficient conditions for existence of an optimal control. We also provide examples for which our sufficient conditions for existence of an optimal solution are satisfied. Finally we show that our solution to the control problem provides approximate equilibria for large stochastic games with mean field interactions.
In this paper we discuss new types of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also
the future. We show that these anticipated BSDEs have unique solutions, a comparison theorem for their solutions, and a duality between them and stochastic differential delay equations.
In this paper we investigate the well-posedness of backward or forward stochastic differential equations whose law is constrained to live in an a priori given (smooth enough) set and which is reflected along the corresponding normal vector. We also s
tudy the associated interacting particle system reflected in mean field and asymptotically described by such equations. The case of particles submitted to a common noise as well as the asymptotic system is studied in the forward case. Eventually, we connect the forward and backward stochastic differential equations with normal constraints in law with partial differential equations stated on the Wasserstein space and involving a Neumann condition in the forward case and an obstacle in the backward one.