ﻻ يوجد ملخص باللغة العربية
Two types of eigenvalue continuity are commonly used in the literature. However, their meanings and the conditions under which continuities are used are not always stated clearly. This can lead to some confusion and needs to be addressed. In this note, we revisit the Gerv{s}gorin disk theorem and clarify the issue concerning the proofs of the theorem by continuity.
We consider the plasmonic eigenvalue problem for a general 2D domain with a curvilinear corner, studying the spectral theory of the Neumann--Poincare operator of the boundary. A limiting absorption principle is proved, valid when the spectral paramet
The quaternionic spectral theorem has already been considered in the literature, see e.g. [22], [31], [32], however, except for the finite dimensional case in which the notion of spectrum is associated to an eigenvalue problem, see [21], it is not sp
We consider a twisted quantum wave guide, and are interested in the spectral analysis of the associated Dirichlet Laplacian H. We show that if the derivative of rotation angle decays slowly enough at infinity, then there is an infinite sequence of di
We demonstrate lower bounds for the eigenvalues of compact Bakry-Emery manifolds with and without boundary. The lower bounds for the first eigenvalue rely on a generalised maximum principle which allows gradient estimates in the Riemannian setting to
Let $Lambdasubset mathbb{R}^d$ be a domain consisting of several cylinders attached to a bounded center. One says that $Lambda$ admits a threshold resonance if there exists a non-trivial bounded function $u$ solving $-Delta u= u u$ in $Lambda$ and va