ﻻ يوجد ملخص باللغة العربية
We consider the plasmonic eigenvalue problem for a general 2D domain with a curvilinear corner, studying the spectral theory of the Neumann--Poincare operator of the boundary. A limiting absorption principle is proved, valid when the spectral parameter approaches the essential spectrum. Putting the principle into use, it is proved that the corner produces absolutely continuous spectrum of multiplicity 1. The embedded eigenvalues are discrete. In particular, there is no singular continuous spectrum.
Two types of eigenvalue continuity are commonly used in the literature. However, their meanings and the conditions under which continuities are used are not always stated clearly. This can lead to some confusion and needs to be addressed. In this not
Given a self-adjoint operator $H_0$ and a relatively $H_0$-compact self-adjoint operator $V,$ the functions $r_j(z) = - sigma_j^{-1}(z),$ where $sigma_j(z)$ are eigenvalues of the compact operator $(H_0-z)^{-1}V,$ bear a lot of important information
The spectral flow is a classical notion of functional analysis and differential geometry which was given different interpretations as Fredholm index, Witten index, and Maslov index. The classical theory treats spectral flow outside the essential spec
We derive a limiting absorption principle on any compact interval in $mathbb{R} backslash {0}$ for the free massless Dirac operator, $H_0 = alpha cdot (-i abla)$ in $[L^2(mathbb{R}^n)]^N$, $n geq 2$, $N=2^{lfloor(n+1)/2rfloor}$, and then prove the a
This paper studies the size of the minimal gap between any two consecutive eigenvalues in the Dirichlet and in the Neumann spectrum of the standard Laplace operator on the Sierpinski gasket. The main result shows the remarkable fact that this minimal