ﻻ يوجد ملخص باللغة العربية
The quaternionic spectral theorem has already been considered in the literature, see e.g. [22], [31], [32], however, except for the finite dimensional case in which the notion of spectrum is associated to an eigenvalue problem, see [21], it is not specified which notion of spectrum underlies the theorem. In this paper we prove the quaternionic spectral theorem for unitary operators using the $S$-spectrum. In the case of quaternionic matrices, the $S$-spectrum coincides with the right-spectrum and so our result recovers the well known theorem for matrices. The notion of $S$-spectrum is relatively new, see [17], and has been used for quaternionic linear operators, as well as for $n$-tuples of not necessarily commuting operators, to define and study a noncommutati
In this note we investigate complete non-selfadjointness for all maximally dissipative extensions of a Schrodinger operator on a half-line with dissipative bounded potential and dissipative boundary condition. We show that all maximally dissipative e
We address the question whether there is a three-dimensional bounded domain such that the Neumann--Poincare operator defined on its boundary has infinitely many negative eigenvalues. It is proved in this paper that tori have such a property. It is do
We show that the spectral flow of a one-parameter family of Schrodinger operators on a metric graph is equal to the Maslov index of a path of Lagrangian subspaces describing the vertex conditions. In addition, we derive an Hadamard-type formula for t
In this paper, a decomposition theorem for (covariant) unitary group representations on Kaplansky-Hilbert modules over Stone algebras is established, which generalizes the well-known Hilbert space case (where it coincides with the decomposition of Ja
We present a Gershgorins type result on the localisation of the spectrum of a matrix. Our method is elementary and relies upon the method of Schur complements, furthermore it outperforms the one based on the Cassini ovals of Ostrovski and Brauer. Fur