ترغب بنشر مسار تعليمي؟ اضغط هنا

The spectral theorem for unitary operators based on the $S$-spectrum

172   0   0.0 ( 0 )
 نشر من قبل Fabrizio Colombo
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The quaternionic spectral theorem has already been considered in the literature, see e.g. [22], [31], [32], however, except for the finite dimensional case in which the notion of spectrum is associated to an eigenvalue problem, see [21], it is not specified which notion of spectrum underlies the theorem. In this paper we prove the quaternionic spectral theorem for unitary operators using the $S$-spectrum. In the case of quaternionic matrices, the $S$-spectrum coincides with the right-spectrum and so our result recovers the well known theorem for matrices. The notion of $S$-spectrum is relatively new, see [17], and has been used for quaternionic linear operators, as well as for $n$-tuples of not necessarily commuting operators, to define and study a noncommutati



قيم البحث

اقرأ أيضاً

In this note we investigate complete non-selfadjointness for all maximally dissipative extensions of a Schrodinger operator on a half-line with dissipative bounded potential and dissipative boundary condition. We show that all maximally dissipative e xtensions that preserve the differential expression are completely non-selfadjoint. However, it is possible for maximally dissipative extensions to have a one-dimensional reducing subspace on which the operator is selfadjoint. We give a characterisation of these extensions and the corresponding subspaces and present a specific example.
We address the question whether there is a three-dimensional bounded domain such that the Neumann--Poincare operator defined on its boundary has infinitely many negative eigenvalues. It is proved in this paper that tori have such a property. It is do ne by decomposing the Neumann--Poincare operator on tori into infinitely many self-adjoint compact operators on a Hilbert space defined on the circle using the toroidal coordinate system and the Fourier basis, and then by proving that the numerical range of infinitely many operators in the decomposition has both positive and negative values.
We show that the spectral flow of a one-parameter family of Schrodinger operators on a metric graph is equal to the Maslov index of a path of Lagrangian subspaces describing the vertex conditions. In addition, we derive an Hadamard-type formula for t he derivatives of the eigenvalue curves via the Maslov crossing form.
In this paper, a decomposition theorem for (covariant) unitary group representations on Kaplansky-Hilbert modules over Stone algebras is established, which generalizes the well-known Hilbert space case (where it coincides with the decomposition of Ja cobs, de Leeuw and Glicksberg). The proof rests heavily on the operator theory on Kaplansky-Hilbert modules, in particular the spectral theorem for Hilbert-Schmidt homomorphisms on such modules. As an application, a generalization of the celebrated Furstenberg-Zimmer structure theorem to the case of measure-preserving actions of arbitrary groups on arbitrary probability spaces is established.
We present a Gershgorins type result on the localisation of the spectrum of a matrix. Our method is elementary and relies upon the method of Schur complements, furthermore it outperforms the one based on the Cassini ovals of Ostrovski and Brauer. Fur thermore, it yields estimates that hold without major differences in the cases of both scalar and operator matrices. Several refinements of known results are obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا