ﻻ يوجد ملخص باللغة العربية
Let $Lambdasubset mathbb{R}^d$ be a domain consisting of several cylinders attached to a bounded center. One says that $Lambda$ admits a threshold resonance if there exists a non-trivial bounded function $u$ solving $-Delta u= u u$ in $Lambda$ and vanishing at the boundary, where $ u$ is the bottom of the essential spectrum of the Dirichlet Laplacian in $Lambda$. We derive a sufficient condition for the absence of threshold resonances in terms of the Laplacian eigenvalues on the center. The proof is elementary and is based on the min-max principle. Some two- and three-dimensional examples and applications to the study of Laplacians on thin networks are discussed.
Using a unified approach employing a homogeneous Lippmann-Schwinger-type equation satisfied by resonance functions and basic facts on Riesz potentials, we discuss the absence of threshold resonances for Dirac and Schrodinger operators with sufficient
We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furt
In the presence of the homogeneous electric field ${bf E}$ and the homogeneous perpendicular magnetic field ${bf B}$, the classical trajectory of a quantum particle on ${mathbb R}^2$ moves with drift velocity $alpha$ which is perpendicular to the ele
We consider the problem of geometric optimization of the lowest eigenvalue for the Laplacian on a compact, simply-connected two-dimensional manifold with boundary subject to an attractive Robin boundary condition. We prove that in the sub-class of ma
We consider the 3D Schrodinger operator $H_0$ with constant magnetic field $B$ of scalar intensity $b>0$, and its perturbations $H_+$ (resp., $H_-$) obtained by imposing Dirichlet (resp., Neumann) conditions on the boundary of the bounded domain $Ome