ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic structure and ionicity of actinide oxides from first principles calculations

158   0   0.0 ( 0 )
 نشر من قبل Leon Petit
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density (SIC-LSD) approximation. Emphasis is put on the degree of f-electron localization, which for AO2 and A2O3 is found to follow the stoichiometry, namely corresponding to A(4+) ions in the dioxide and A(3+) ions in the sesquioxides. In contrast, the A(2+) ionic configuration is not favorable in the monoxides, which therefore become metallic. The energetics of the oxidation and reduction of the actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onwards. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground state configurations of the corresponding lanthanide oxides. The ionic nature of the actinide oxides emerges from the fact that only those compounds will form where the calculated ground state valency agrees with the nominal valency expected from a simple charge counting.



قيم البحث

اقرأ أيضاً

117 - G. Kotliar , S.Y. Savrasov 2002
We review the basic ideas of the dynamical mean field theory (DMFT) and some of the insights into the electronic structure of strongly correlated electrons obtained by this method in the context of model Hamiltonians. We then discuss the perspectives for carrying out more realistic DMFT studies of strongly correlated electron systems and we compare it with existent methods, LDA and LDA+U. We stress the existence of new functionals for electronic structure calculations which allow us to treat situations where the single--particle description breaks down such as the vicinity of the Mott transition.
440 - Haiming Li , Jiong Li , Shuo Zhang 2008
Based on the first-principles calculations, we have investigated the geometry, binding properties, density of states and band structures of the novel superconductor LaFe1-xCoxAsO and its parent compounds with the ZrCuSiAs structure. We demonstrate th at La-O bond and TM-As (TM=Fe or Co) bond are both strongly covalent, while the LaO and TMAs layers have an almost ionic interaction through the Bader charge analysis. Partial substitution of iron with cobalt modify the Fermi level from a steep edge to a flat slope, which explains why in this system Co doping suppresses the spin density wave (SDW) transition.
Based on First-principles calculation, we have investigated electronic structure of a ZrCuSiAs structured superconductor LaNiPO. The density of states, band structures and Fermi surfaces have been given in detail. Our results indicate that the bondin g of the La-O and Ni-P is strongly covalent whereas binding property between the LaO and NiP blocks is mostly ionic. Its also found that four bands are across the Fermi level and the corresponding Fermi surfaces all have a two-dimensional character. In addition, we also give the band decomposed charge density, which suggests that orbital components of Fermi surfaces are more complicated than cuprate superconductors.
The complicated electronic, magnetic, and colossal magnetoresistant (CMR) properties of Sr and Ca doped lanthanum manganites can be understood by spin-polarized first-principles calculations. The electronic properties can be attributed to a detailed balancing between Sr and Ca induced metal-like O 2p and majority-spin (majority-spin) Mn eg delocalized states and the insulator-like minority-spin (minority-spin) Mn t2g band near the Fermi level (EF). The magnetic properties can be attributed to a detailed balancing between O mediated antiferromagnetic superexchange and delocalized majority-spin Mn eg-state mediated ferromagnetic spin-spin couplings. While CMR can be attributed to the lining up of magnetic domains trigged by the applied magnetic field, which suppresses the trapping ability of the empty Mn t2g states that resists the motion of conducting Mn majority-spin eg electrons.
To explore the electronic structure of the first aromatic superconductor, potassium-doped solid picene which has been recently discovered by Mitsuhashi et al with the transition temperatures $T_c=7 - 20$ K, we have obtained a first-principles electro nic structure of solid picene as a first step toward the elucidation of the mechanism of the superconductivity. The undoped crystal is found to have four conduction bands, which are characterized in terms of the maximally localized Wannier orbitals. We have revealed how the band structure reflects the stacked arrangement of molecular orbitals for both undoped and doped (K$_3$picene) cases, where the bands are not rigid. The Fermi surface for K$_3$picene is a curious composite of a warped two-dimensional surface and a three-dimensional one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا