ﻻ يوجد ملخص باللغة العربية
Function approximation is a powerful approach for structuring large decision problems that has facilitated great achievements in the areas of reinforcement learning and game playing. Regression counterfactual regret minimization (RCFR) is a simple algorithm for approximately solving imperfect information games with normalized rectified linear unit (ReLU) parameterized policies. In contrast, the more conventional softmax parameterization is standard in the field of reinforcement learning and yields a regret bound with a better dependence on the number of actions. We derive approximation error-aware regret bounds for $(Phi, f)$-regret matching, which applies to a general class of link functions and regret objectives. These bounds recover a tighter bound for RCFR and provide a theoretical justification for RCFR implementations with alternative policy parameterizations ($f$-RCFR), including softmax. We provide exploitability bounds for $f$-RCFR with the polynomial and exponential link functions in zero-sum imperfect information games and examine empirically how the link function interacts with the severity of the approximation. We find that the previously studied ReLU parameterization performs better when the approximation error is small while the softmax parameterization can perform better when the approximation error is large.
Securing networked infrastructures is important in the real world. The problem of deploying security resources to protect against an attacker in networked domains can be modeled as Network Security Games (NSGs). Unfortunately, existing approaches, in
The notion of emph{policy regret} in online learning is a well defined? performance measure for the common scenario of adaptive adversaries, which more traditional quantities such as external regret do not take into account. We revisit the notion of
Regret has been established as a foundational concept in online learning, and likewise has important applications in the analysis of learning dynamics in games. Regret quantifies the difference between a learners performance against a baseline in hin
We consider a scenario in which two reinforcement learning agents repeatedly play a matrix game against each other and update their parameters after each round. The agents decision-making is transparent to each other, which allows each agent to predi
In this paper, we present exploitability descent, a new algorithm to compute approximate equilibria in two-player zero-sum extensive-form games with imperfect information, by direct policy optimization against worst-case opponents. We prove that when