ﻻ يوجد ملخص باللغة العربية
The notion of emph{policy regret} in online learning is a well defined? performance measure for the common scenario of adaptive adversaries, which more traditional quantities such as external regret do not take into account. We revisit the notion of policy regret and first show that there are online learning settings in which policy regret and external regret are incompatible: any sequence of play that achieves a favorable regret with respect to one definition must do poorly with respect to the other. We then focus on the game-theoretic setting where the adversary is a self-interested agent. In that setting, we show that external regret and policy regret are not in conflict and, in fact, that a wide class of algorithms can ensure a favorable regret with respect to both definitions, so long as the adversary is also using such an algorithm. We also show that the sequence of play of no-policy regret algorithms converges to a emph{policy equilibrium}, a new notion of equilibrium that we introduce. Relating this back to external regret, we show that coarse correlated equilibria, which no-external regret players converge to, are a strict subset of policy equilibria. Thus, in game-theoretic settings, every sequence of play with no external regret also admits no policy regret, but the converse does not hold.
We study online learning in repeated first-price auctions with censored feedback, where a bidder, only observing the winning bid at the end of each auction, learns to adaptively bid in order to maximize her cumulative payoff. To achieve this goal, th
We introduce DREAM, a deep reinforcement learning algorithm that finds optimal strategies in imperfect-information games with multiple agents. Formally, DREAM converges to a Nash Equilibrium in two-player zero-sum games and to an extensive-form coars
We prove that every repeated game with countably many players, finite action sets, and tail-measurable payoffs admits an $epsilon$-equilibrium, for every $epsilon > 0$.
This paper considers repeated games in which one player has more information about the game than the other players. In particular, we investigate repeated two-player zero-sum games where only the column player knows the payoff matrix A of the game. S
A dominant approach to solving large imperfect-information games is Counterfactural Regret Minimization (CFR). In CFR, many regret minimization problems are combined to solve the game. For very large games, abstraction is typically needed to render C