ﻻ يوجد ملخص باللغة العربية
One of the most pressing questions in climate science is that of the effect of anthropogenic aerosol on the Earths energy balance. Aerosols provide the `seeds on which cloud droplets form, and changes in the amount of aerosol available to a cloud can change its brightness and other physical properties such as optical thickness and spatial extent. Clouds play a critical role in moderating global temperatures and small perturbations can lead to significant amounts of cooling or warming. Uncertainty in this effect is so large it is not currently known if it is negligible, or provides a large enough cooling to largely negate present-day warming by CO2. This work uses deep convolutional neural networks to look for two particular perturbations in clouds due to anthropogenic aerosol and assess their properties and prevalence, providing valuable insights into their climatic effects.
One of the greatest sources of uncertainty in future climate projections comes from limitations in modelling clouds and in understanding how different cloud types interact with the climate system. A key first step in reducing this uncertainty is to a
Small disturbances can trigger functional breakdowns in complex systems. A challenging task is to infer the structural cause of a disturbance in a networked system, soon enough to prevent a catastrophe. We present a graph neural network approach, bor
We analyze clouds in the earths atmosphere using ground-based sky cameras. An accurate segmentation of clouds in the captured sky/cloud image is difficult, owing to the fuzzy boundaries of clouds. Several techniques have been proposed that use color
We use a hybrid deep learning model to predict June-July-August (JJA) daily maximum 8-h average (MDA8) surface ozone concentrations in the US. A set of meteorological fields from the ERA-Interim reanalysis as well as monthly mean NO$_x$ emissions fro
We present 3DeepCT, a deep neural network for computed tomography, which performs 3D reconstruction of scattering volumes from multi-view images. Our architecture is dictated by the stationary nature of atmospheric cloud fields. The task of volumetri