ﻻ يوجد ملخص باللغة العربية
We analyze clouds in the earths atmosphere using ground-based sky cameras. An accurate segmentation of clouds in the captured sky/cloud image is difficult, owing to the fuzzy boundaries of clouds. Several techniques have been proposed that use color as the discriminatory feature for cloud detection. In the existing literature, however, analysis of daytime and nighttime images is considered separately, mainly because of differences in image characteristics and applications. In this paper, we propose a light-weight deep-learning architecture called CloudSegNet. It is the first that integrates daytime and nighttime (also known as nychthemeron) image segmentation in a single framework, and achieves state-of-the-art results on public databases.
Semantic image segmentation is the process of labeling each pixel of an image with its corresponding class. An encoder-decoder based approach, like U-Net and its variants, is a popular strategy for solving medical image segmentation tasks. To improve
Unsupervised domain adaptation (UDA) methods have shown their promising performance in the cross-modality medical image segmentation tasks. These typical methods usually utilize a translation network to transform images from the source domain to targ
We seek to investigate the scalability of neuromorphic computing for computer vision, with the objective of replicating non-neuromorphic performance on computer vision tasks while reducing power consumption. We convert the deep Artificial Neural Netw
We present a deep learning model with temporal memory to detect clouds in image time series acquired by the Seviri imager mounted on the Meteosat Second Generation (MSG) satellite. The model provides pixel-level cloud maps with related confidence and
We extend first-order model agnostic meta-learning algorithms (including FOMAML and Reptile) to image segmentation, present a novel neural network architecture built for fast learning which we call EfficientLab, and leverage a formal definition of th