ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical Tuning of Exciton and Trion Emissions in Monolayer Phosphorene

145   0   0.0 ( 0 )
 نشر من قبل Yuerui Lu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Monolayer phosphorene provides a unique two-dimensional (2D) platform to investigate the fundamental dynamics of excitons and trions (charged excitons) in reduced dimensions. However, owing to its high instability, unambiguous identification of monolayer phosphorene has been elusive. Consequently, many important fundamental properties, such as exciton dynamics, remain underexplored. We report a rapid, noninvasive, and highly accurate approach based on optical interferometry to determine the layer number of phosphorene, and confirm the results with reliable photoluminescence measurements. Furthermore, we successfully probed the dynamics of excitons and trions in monolayer phosphorene by controlling the photo-carrier injection in a relatively low excitation power range. Based on our measured optical gap and the previously measured electronic energy gap, we determined the exciton binding energy to be ~0.3 eV for the monolayer phosphorene on SiO2/Si substrate, which agrees well with theoretical predictions. A huge trion binding energy of ~100 meV was first observed in monolayer phosphorene, which is around five times higher than that in transition metal dichalcogenide (TMD) monolayer semiconductor, such as MoS2. The carrier lifetime of exciton emission in monolayer phosphorene was measured to be ~220 ps, which is comparable to those in other 2D TMD semiconductors. Our results open new avenues for exploring fundamental phenomena and novel optoelectronic applications using monolayer phosphorene.



قيم البحث

اقرأ أيضاً

Monolayer transition metal dichalcogenides (TMDs) are direct gap semiconductors emerging promising applications in diverse optoelectronic devices. To improve performance, recent investigations have been systematically focused on the tuning of their o ptical properties. However, an all-optical approach with the reversible feature is still a challenge. Here we demonstrate the tunability of the photoluminescence (PL) properties of monolayer WS2 via laser irradiation. The modulation of PL intensity, as well as the conversion between neutral exciton and charged trion have been readily and reversibly achieved by using different laser power densities. We attribute the reversible manipulation to the laser-assisted adsorption and desorption of gas molecules, which will deplete or release free electrons from the surface of WS2 and thus modify its PL properties. This all-optical manipulation, with advantages of reversibility, quantitative control, and high spatial resolution, suggests promising applications of TMDs monolayers in optoelectronic and nanophotonic applications, such as optical data storage, micropatterning, and display.
Two-dimensional (2D) monolayer phosphorene, a 2D system with quasi-one-dimensional (quasi-1D) excitons, provides a unique 2D platform for investigating the dynamics of excitons in reduced dimensions and fundamental many-body interactions. However, on the other hand, the quasi-1D excitonic nature can limit the luminescence quantum yield significantly. Here, we report exciton brightening in monolayer phosphorene achieved via the dimensionality modification of excitons from quasi-1D to zero-dimensional (0D), through the transference of monolayer phosphorene samples onto defect-rich oxide substrate deposited by plasma-enhanced chemical vapor deposition (PECVD). The resultant interfacial luminescent local states lead to exciton localization and trigger efficient photon emissions at a new wavelength of ~920 nm. The luminescence quantum yield of 0D-like localized excitons is measured to be at least 33.6 times larger than that of intrinsic quasi-1D free excitons in monolayer phosphorene. This is primarily due to the reduction of non-radiative decay rate and the possibly enhanced radiative recombination probability. Owing to the large trapping energy, this new photon emission from the localized excitons in monolayer phosphorene can be observed at elevated temperature, which contrasts markedly with defect-induced photon emission from transition metal dichalcogenide (TMD) semiconductor monolayers that can only be observed at cryogenic temperatures. Our findings introduce new avenues for the development of novel photonic devices based on monolayer phosphorene, such as near-infrared lighting devices that are operable at elevated temperature. More importantly, 2D phosphorene with quasi-1D free excitons and 0D-like localized excitons provides a unique platform to investigate the fundamental phenomena in the ideal 2D-1D-0D hybrid system.
161 - Bo Wen , Yi Zhu , Didit Yudistira 2019
In this work, we show how domain engineered lithium niobate can be used to selectively dope monolayer MoSe2 and WSe2 and demonstrate that these ferroelectric domains can significantly enhance or inhibit photoluminescence (PL) with the most dramatic m odulation occurring at the heterojunction interface between two domains. A micro-PL and Raman system is used to obtain spatially resolved images of the differently doped transition metal dichalcogenides (TMDs). The domain inverted lithium niobate causes changes in the TMDs due to electrostatic doping as a result of the remnant polarization from the substrate. Moreover, the differently doped TMDs (n-type MoSe2 and p-type WSe2) exhibit opposite PL modulation. Distinct oppositely charged domains were obtained with a 9-fold PL enhancement for the same single MoSe2 sheet when adhered to the positive (P+) and negative (P-) domains. This sharp PL modulation on the ferroelectric domain results from different free electron or hole concentrations in the materials conduction band or valence band. Moreover, excitons dissociate rapidly at the interface between the P+ and P- domains due to the built-in electric field. We are able to adjust the charge on the P+ and P- domains using temperature via the pyroelectric effect and observe rapid PL quenching over a narrow temperature range illustrating the observed PL modulation is electronic in nature. This observation creates an opportunity to harness the direct bandgap TMD 2D materials as an active optical component for the lithium niobate platform using domain engineering of the lithium niobate substrate to create optically active heterostructures that could be used for photodetectors or even electrically driven optical sources on-chip.
66 - Aida Hichri 2016
The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional (2D) semiconductors. They have attracted increasing attention due to their unique optical properties originate fr om neutral and charged excitons. Here, we report negatively charged exciton formation in monolayer TMDs, notably tungsten disulfide WS2. Our theory is based on an effective mass model of neutral and charged excitons, parameterized by ab-initio calculations. Taking into the account the strong correlation between the monolayer WS2 and the surrounding dielectric environment, our theoretical results are in good agreement with one-photon photoluminescence (PL) and reflectivity measurements. We also show that the exciton state with p-symmetry, experimentally observed by two-photon PL emission, is energetically below the 2s-state. We use the equilibrium mass action law, to quantify the relative weight of exciton and trion PL. We show that exciton and trion emission can be tuned and controlled by external parameters like temperature, pumping and injection electrons. Finally, in comparison with experimental measurements, we show that exciton emission in monolayer tungsten dichalcogenides is substantially reduced. This feature suggests that free exciton can be trapped in disordered potential wells to form a localized exciton and therefore offers a route toward novel optical properties.
Charge doping in transition metal dichalcogenide is currently a subject of high importance for future electronic and optoelectronic applications. Here we demonstrate chemical doping in CVD grown monolayer (1L) of WS2 by a few commonly used laboratory solvents by investigating the room temperature photoluminescence (PL). The appearance of distinct trionic emission in the PL spectra and quenched PL intensities suggest n-type doping in WS2. The temperature-dependent PL spectra of the doped 1L-WS2 reveal significant enhancement of trion emission intensity over the excitonic emission at low temperature indicating the stability of trion at low temperature. The temperature dependent exciton-trion population dynamic has been modeled using the law of mass action of trion formation. These results shed light on the solution-based chemical doping in 1L WS2 and its profound effect on the photoluminescence which is essential for the control of optical and electrical properties for optoelectronics applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا