ﻻ يوجد ملخص باللغة العربية
The 2+1D topological order can be characterized by the mapping-class-group representations for Riemann surfaces of genus-1, genus-2, etc. In this paper, we use those representations to determine the possible gapped boundaries of a 2+1D topological order, as well as the domain walls between two topological orders. We find that mapping-class-group representations for both genus-1 and genus-2 surfaces are needed to determine the gapped domain walls and boundaries. Our systematic theory is based on the fixed-point partition functions for the walls (or the boundaries), which completely characterize the gapped domain walls (or the boundaries). The mapping-class-group representations give rise to conditions that must be satisfied by the fixed-point partition functions, which leads to a systematic theory. Such conditions can be viewed as bulk topological order determining the (non-invertible) gravitational anomaly at the domain wall, and our theory can be viewed as finding all types of the gapped domain wall given a (non-invertible) gravitational anomaly. We also developed a systematic theory of gapped domain walls (boundaries) based on the structure coefficients of condensable algebras.
We develop a theory of gapped domain wall between topologically ordered systems in two spatial dimensions. We find a new type of superselection sector -- referred to as the parton sector -- that subdivides the known superselection sectors localized o
We study effectively one-dimensional systems that emerge at the edge of a two-dimensional topologically ordered state, or at the boundary between two topologically ordered states. We argue that anyons of the bulk are associated with emergent symmetri
In a certain regime of low carrier densities and strong correlations, electrons can crystallize into a periodic arrangement of charge known as Wigner crystal. Such phases are particularly interesting in one dimension (1D) as they display a variety of
We study the Z2 topologically ordered surface state of three-dimensional bosonic SPT phases with the discrete symmetries G1 x G2. It has been argued that the topologically ordered surface state cannot be realized on a purely two-dimensional lattice m
Recent low temperature heat capacity (C$_P$) measurements on polycrystalline samples of the pyrochlore antiferromagnet Tb$_{2+x}$Ti$_{2-x}$O$_{7+delta}$ have shown a strong sensitivity to the precise Tb concentration $x$, with a large anomaly exhibit