ﻻ يوجد ملخص باللغة العربية
We develop a theory of gapped domain wall between topologically ordered systems in two spatial dimensions. We find a new type of superselection sector -- referred to as the parton sector -- that subdivides the known superselection sectors localized on gapped domain walls. Moreover, we introduce and study the properties of composite superselection sectors that are made out of the parton sectors. We explain a systematic method to define these sectors, their fusion spaces, and their fusion rules, by deriving nontrivial identities relating their quantum dimensions and fusion multiplicities. We propose a set of axioms regarding the ground state entanglement entropy of systems that can host gapped domain walls, generalizing the bulk axioms proposed in [B. Shi, K. Kato, and I. H. Kim, Ann. Phys. 418, 168164 (2020)]. Similar to our analysis in the bulk, we derive our main results by examining the self-consistency relations of an object called information convex set. As an application, we define an analog of topological entanglement entropy for gapped domain walls and derive its exact expression.
We study the ground-state entanglement of gapped domain walls between topologically ordered systems in two spatial dimensions. We derive a universal correction to the ground-state entanglement entropy, which is equal to the logarithm of the total qua
The 2+1D topological order can be characterized by the mapping-class-group representations for Riemann surfaces of genus-1, genus-2, etc. In this paper, we use those representations to determine the possible gapped boundaries of a 2+1D topological or
We study quantized non-local order parameters, constructed by using partial time-reversal and partial reflection, for fermionic topological phases of matter in one spatial dimension protected by an orientation reversing symmetry, using topological qu
The low energy physics of interacting quantum systems is typically understood through the identification of the relevant quasiparticles or low energy excitations and their quantum numbers. We present a quantum information framework that goes beyond t
We study the problem of calculating transport properties of interacting quantum systems, specifically electrical and thermal conductivities, by computing the non-equilibrium steady state (NESS) of the system biased by contacts. Our approach is based