ترغب بنشر مسار تعليمي؟ اضغط هنا

Conflicting Symmetries in Topologically Ordered Surface States of Three-dimensional Bosonic Symmetry Protected Topological Phases

150   0   0.0 ( 0 )
 نشر من قبل Gil Young Cho
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the Z2 topologically ordered surface state of three-dimensional bosonic SPT phases with the discrete symmetries G1 x G2. It has been argued that the topologically ordered surface state cannot be realized on a purely two-dimensional lattice model. We carefully examine the statement and show that the surface state should break G2 if the symmetry G1 is gauged. This manifests the conflict of the symmetry G1 and G2 on the surface of the three-dimensional SPT phase. Given that there is no such phenomena in the purely two-dimensional model, it signals that the symmetries are encoded anomalously on the surface of the three-dimensional SPT phases and that the surface state can never be realized on the purely two-dimensional models.



قيم البحث

اقرأ أيضاً

148 - H. Nonne , M. Moliner , S. Capponi 2012
We investigate the existence of symmetry-protected topological phases in one-dimensional alkaline-earth cold fermionic atoms with general half-integer nuclear spin I at half filling. In this respect, some orbital degrees of freedom are required. They can be introduced by considering either the metastable excited state of alkaline-earth atoms or the p-band of the optical lattice. Using complementary techniques, we show that SU(2) Haldane topological phases are stabilised from these orbital degrees of freedom. On top of these phases, we find the emergence of topological phases with enlarged SU(2I+1) symmetry which depend only on the nuclear spin degrees of freedom. The main physical properties of the latter phases are further studied using a matrix-product state approach. On the one hand, we find that these phases are symmetry-protected topological phases, with respect to inversion symmetry, when I=1/2,5/2,9/2,..., which is directly relevant to ytterbium and strontium cold fermions. On the other hand, for the other values of I(=half-odd integer), these topological phases are stabilised only in the presence of exact SU(2I+1)-symmetry.
We review the dimensional reduction procedure in the group cohomology classification of bosonic SPT phases with finite abelian unitary symmetry group. We then extend this to include general reductions of arbitrary dimensions and also extend the proce dure to fermionic SPT phases described by the Gu-Wen super-cohomology model. We then show that we can define topological invariants as partition functions on certain closed orientable/spin manifolds equipped with a flat connection. The invariants are able to distinguish all phases described within the respective models. Finally, we establish a connection to invariants obtained from braiding statistics of the corresponding gauged theories.
Abelian Chern-Simons theory, characterized by the so-called $K$ matrix, has been quite successful in characterizing and classifying Abelian fractional quantum hall effect (FQHE) as well as symmetry protected topological (SPT) phases, especially for b osonic SPT phases. However, there are still some puzzles in dealing with fermionic SPT(fSPT) phases. In this paper, we utilize the Abelian Chern-Simons theory to study the fSPT phases protected by arbitrary Abelian total symmetry $G_f$. Comparing to the bosonic SPT phases, fSPT phases with Abelian total symmetry $G_f$ has three new features: (1) it may support gapless majorana fermion edge modes, (2) some nontrivial bosonic SPT phases may be trivialized if $G_f$ is a nontrivial extention of bosonic symmetry $G_b$ over $mathbb{Z}_2^f$, (3) certain intrinsic fSPT phases can only be realized in interacting fermionic system. We obtain edge theories for various fSPT phases, which can also be regarded as conformal field theories (CFT) with proper symmetry anomaly. In particular, we discover the construction of Luttinger liquid edge theories with central charge $n-1$ for Type-III bosonic SPT phases protected by $(mathbb{Z}_n)^3$ symmetry and the Luttinger liquid edge theories for intrinsically interacting fSPT protected by unitary Abelian symmetry. The ideas and methods used here might be generalized to derive the edge theories of fSPT phases with arbitrary unitary finite Abelian total symmetry $G_f$.
We propose and prove a family of generalized Lieb-Schultz-Mattis (LSM) theorems for symmetry protected topological (SPT) phases on boson/spin models in any dimensions. The conventional LSM theorem, applicable to e.g. any translation invariant system with an odd number of spin-1/2 particles per unit cell, forbids a symmetric short-range-entangled ground state in such a system. Here we focus on systems with no LSM anomaly, where global/crystalline symmetries and fractional spins within the unit cell ensure that any symmetric SRE ground state must be a nontrivial SPT phase with anomalous boundary excitations. Depending on models, they can be either strong or higher-order crystalline SPT phases, characterized by nontrivial surface/hinge/corner states. Furthermore, given the symmetry group and the spatial assignment of fractional spins, we are able to determine all possible SPT phases for a symmetric ground state, using the real space construction for SPT phases based on the spectral sequence of cohomology theory. We provide examples in one, two and three spatial dimensions, and discuss possible physical realization of these SPT phases based on condensation of topological excitations in fractionalized phases.
117 - Ken Shiozaki , Shinsei Ryu 2016
Matrix Product States (MPSs) provide a powerful framework to study and classify gapped quantum phases --symmetry-protected topological (SPT) phases in particular--defined in one dimensional lattices. On the other hand, it is natural to expect that ga pped quantum phases in the limit of zero correlation length are described by topological quantum field theories (TFTs or TQFTs). In this paper, for (1+1)-dimensional bosonic SPT phases protected by symmetry $G$, we bridge their descriptions in terms of MPSs, and those in terms of $G$-equivariant TFTs. In particular, for various topological invariants (SPT invariants) constructed previously using MPSs, we provide derivations from the point of view of (1+1) TFTs. We also discuss the connection between boundary degrees of freedom, which appear when one introduces a physical boundary in SPT phases, and open TFTs, which are TFTs defined on spacetimes with boundaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا