ﻻ يوجد ملخص باللغة العربية
We study effectively one-dimensional systems that emerge at the edge of a two-dimensional topologically ordered state, or at the boundary between two topologically ordered states. We argue that anyons of the bulk are associated with emergent symmetries of the edge, which play a crucial role in the structure of its phase diagram. Using this symmetry principle, transitions between distinct gapped phases at the boundaries of Abelian states can be understood in terms of symmetry breaking transitions or transitions between symmetry protected topological phases. Yet more exotic phenomena occur when the bulk hosts non-Abelian anyons. To demonstrate these principles, we explore the phase diagrams of the edges of a single and a double layer of the toric code, as well as those of domain walls in a single and double-layer Kitaev spin liquid (KSL). In the case of the KSL, we find that the presence of a non-Abelian anyon in the bulk enforces Kramers-Wannier self-duality as a symmetry of the effective boundary theory. These examples illustrate a number of surprising phenomena, such as spontaneous duality-breaking, two-sector phase transitions, and unfreezing of marginal operators at a transition between different gapless phases.
Edge states exhibit the nontrivial topology of energy band in the bulk. As localized states at boundaries, many-particle edge states may obey a special symmetry that is broken in the bulk. When local particle-particle interaction is induced, they may
Quantum mechanical systems, whose degrees of freedom are so-called su(2)_k anyons, form a bridge between ordinary SU(2) spin systems and systems of interacting non-Abelian anyons. Such a connection can be made for arbitrary spin-S systems, and we exp
We study the Z2 topologically ordered surface state of three-dimensional bosonic SPT phases with the discrete symmetries G1 x G2. It has been argued that the topologically ordered surface state cannot be realized on a purely two-dimensional lattice m
Until the late 1980s, phases of matter were understood in terms of Landaus symmetry breaking theory. Following the discovery of the quantum Hall effect the introduction of a second class of phases, those with topological order, was necessary. Phase t
We predict topologically robust zero energy bulk states in a disordered tight binding lattice. We explore a new kind of order and discuss that zero energy states exist in a system iff its Hamiltonian is noninvertible. We show that they are robust aga