ترغب بنشر مسار تعليمي؟ اضغط هنا

Kriging prediction with isotropic Matern correlations: Robustness and experimental design

98   0   0.0 ( 0 )
 نشر من قبل Wenjia Wang
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

This work investigates the prediction performance of the kriging predictors. We derive some error bounds for the prediction error in terms of non-asymptotic probability under the uniform metric and $L_p$ metrics when the spectral densities of both the true and the imposed correlation functions decay algebraically. The Matern family is a prominent class of correlation functions of this kind. Our analysis shows that, when the smoothness of the imposed correlation function exceeds that of the true correlation function, the prediction error becomes more sensitive to the space-filling property of the design points. In particular, the kriging predictor can still reach the optimal rate of convergence, if the experimental design scheme is quasi-uniform. Lower bounds of the kriging prediction error are also derived under the uniform metric and $L_p$ metrics. An accurate characterization of this error is obtained, when an oversmoothed correlation function and a space-filling design is used.

قيم البحث

اقرأ أيضاً

78 - Wenjia Wang , Rui Tuo , 2017
Kriging based on Gaussian random fields is widely used in reconstructing unknown functions. The kriging method has pointwise predictive distributions which are computationally simple. However, in many applications one would like to predict for a rang e of untried points simultaneously. In this work we obtain some error bounds for the (simple) kriging predictor under the uniform metric. It works for a scattered set of input points in an arbitrary dimension, and also covers the case where the covariance function of the Gaussian process is misspecified. These results lead to a better understanding of the rate of convergence of kriging under the Gaussian or the Matern correlation functions, the relationship between space-filling designs and kriging models, and the robustness of the Matern correlation functions.
Scientists and engineers commonly use simulation models to study real systems for which actual experimentation is costly, difficult, or impossible. Many simulations are stochastic in the sense that repeated runs with the same input configuration will result in different outputs. For expensive or time-consuming simulations, stochastic kriging citep{ankenman} is commonly used to generate predictions for simulation model outputs subject to uncertainty due to both function approximation and stochastic variation. Here, we develop and justify a few guidelines for experimental design, which ensure accuracy of stochastic kriging emulators. We decompose error in stochastic kriging predictions into nominal, numeric, parameter estimation and parameter estimation numeric components and provide means to control each in terms of properties of the underlying experimental design. The design properties implied for each source of error are weakly conflicting and broad principles are proposed. In brief, space-filling properties small fill distance and large separation distance should balance with replication at distinct input configurations, with number of replications depending on the relative magnitudes of stochastic and process variability. Non-stationarity implies higher input density in more active regions, while regression functions imply a balance with traditional design properties. A few examples are presented to illustrate the results.
126 - Rui Tuo , Yan Wang , C. F. Jeff Wu 2020
Kernel ridge regression is an important nonparametric method for estimating smooth functions. We introduce a new set of conditions, under which the actual rates of convergence of the kernel ridge regression estimator under both the L_2 norm and the n orm of the reproducing kernel Hilbert space exceed the standard minimax rates. An application of this theory leads to a new understanding of the Kennedy-OHagan approach for calibrating model parameters of computer simulation. We prove that, under certain conditions, the Kennedy-OHagan calibration estimator with a known covariance function converges to the minimizer of the norm of the residual function in the reproducing kernel Hilbert space.
161 - Wenjia Wang , Bing-Yi Jing 2021
In this work, we investigate Gaussian process regression used to recover a function based on noisy observations. We derive upper and lower error bounds for Gaussian process regression with possibly misspecified correlation functions. The optimal conv ergence rate can be attained even if the smoothness of the imposed correlation function exceeds that of the true correlation function and the sampling scheme is quasi-uniform. As byproducts, we also obtain convergence rates of kernel ridge regression with misspecified kernel function, where the underlying truth is a deterministic function. The convergence rates of Gaussian process regression and kernel ridge regression are closely connected, which is aligned with the relationship between sample paths of Gaussian process and the corresponding reproducing kernel Hilbert space.
We study the following learning problem with dependent data: Observing a trajectory of length $n$ from a stationary Markov chain with $k$ states, the goal is to predict the next state. For $3 leq k leq O(sqrt{n})$, using techniques from universal com pression, the optimal prediction risk in Kullback-Leibler divergence is shown to be $Theta(frac{k^2}{n}log frac{n}{k^2})$, in contrast to the optimal rate of $Theta(frac{log log n}{n})$ for $k=2$ previously shown in Falahatgar et al., 2016. These rates, slower than the parametric rate of $O(frac{k^2}{n})$, can be attributed to the memory in the data, as the spectral gap of the Markov chain can be arbitrarily small. To quantify the memory effect, we study irreducible reversible chains with a prescribed spectral gap. In addition to characterizing the optimal prediction risk for two states, we show that, as long as the spectral gap is not excessively small, the prediction risk in the Markov model is $O(frac{k^2}{n})$, which coincides with that of an iid model with the same number of parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا