ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlling Sources of Inaccuracy in Stochastic Kriging

91   0   0.0 ( 0 )
 نشر من قبل Wenjia Wang
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Scientists and engineers commonly use simulation models to study real systems for which actual experimentation is costly, difficult, or impossible. Many simulations are stochastic in the sense that repeated runs with the same input configuration will result in different outputs. For expensive or time-consuming simulations, stochastic kriging citep{ankenman} is commonly used to generate predictions for simulation model outputs subject to uncertainty due to both function approximation and stochastic variation. Here, we develop and justify a few guidelines for experimental design, which ensure accuracy of stochastic kriging emulators. We decompose error in stochastic kriging predictions into nominal, numeric, parameter estimation and parameter estimation numeric components and provide means to control each in terms of properties of the underlying experimental design. The design properties implied for each source of error are weakly conflicting and broad principles are proposed. In brief, space-filling properties small fill distance and large separation distance should balance with replication at distinct input configurations, with number of replications depending on the relative magnitudes of stochastic and process variability. Non-stationarity implies higher input density in more active regions, while regression functions imply a balance with traditional design properties. A few examples are presented to illustrate the results.

قيم البحث

اقرأ أيضاً

78 - Wenjia Wang , Rui Tuo , 2017
Kriging based on Gaussian random fields is widely used in reconstructing unknown functions. The kriging method has pointwise predictive distributions which are computationally simple. However, in many applications one would like to predict for a rang e of untried points simultaneously. In this work we obtain some error bounds for the (simple) kriging predictor under the uniform metric. It works for a scattered set of input points in an arbitrary dimension, and also covers the case where the covariance function of the Gaussian process is misspecified. These results lead to a better understanding of the rate of convergence of kriging under the Gaussian or the Matern correlation functions, the relationship between space-filling designs and kriging models, and the robustness of the Matern correlation functions.
97 - Rui Tuo , Wenjia Wang 2019
This work investigates the prediction performance of the kriging predictors. We derive some error bounds for the prediction error in terms of non-asymptotic probability under the uniform metric and $L_p$ metrics when the spectral densities of both th e true and the imposed correlation functions decay algebraically. The Matern family is a prominent class of correlation functions of this kind. Our analysis shows that, when the smoothness of the imposed correlation function exceeds that of the true correlation function, the prediction error becomes more sensitive to the space-filling property of the design points. In particular, the kriging predictor can still reach the optimal rate of convergence, if the experimental design scheme is quasi-uniform. Lower bounds of the kriging prediction error are also derived under the uniform metric and $L_p$ metrics. An accurate characterization of this error is obtained, when an oversmoothed correlation function and a space-filling design is used.
130 - Jing Lei , Kevin Z. Lin 2020
We consider the problem of estimating common community structures in multi-layer stochastic block models, where each single layer may not have sufficient signal strength to recover the full community structure. In order to efficiently aggregate signa l across different layers, we argue that the sum-of-squared adjacency matrices contains sufficient signal even when individual layers are very sparse. Our method features a bias-removal step that is necessary when the squared noise matrices may overwhelm the signal in the very sparse regime. The analysis of our method uses several novel tail probability bounds for matrix linear combinations with matrix-valued coefficients and matrix-valued quadratic forms, which may be of independent interest. The performance of our method and the necessity of bias removal is demonstrated in synthetic data and in microarray analysis about gene co-expression networks.
68 - Lea Longepierre 2019
We consider a dynamic version of the stochastic block model, in which the nodes are partitioned into latent classes and the connection between two nodes is drawn from a Bernoulli distribution depending on the classes of these two nodes. The temporal evolution is modeled through a hidden Markov chain on the nodes memberships. We prove the consistency (as the number of nodes and time steps increase) of the maximum likelihood and variational estimators of the model parameters, and obtain upper bounds on the rates of convergence of these estimators. We also explore the particular case where the number of time steps is fixed and connectivity parameters are allowed to vary.
136 - Michael Evans , Yang Guo 2019
A common concern with Bayesian methodology in scientific contexts is that inferences can be heavily influenced by subjective biases. As presented here, there are two types of bias for some quantity of interest: bias against and bias in favor. Based u pon the principle of evidence, it is shown how to measure and control these biases for both hypothesis assessment and estimation problems. Optimality results are established for the principle of evidence as the basis of the approach to these problems. A close relationship is established between measuring bias in Bayesian inferences and frequentist properties that hold for any proper prior. This leads to a possible resolution to an apparent conflict between these approaches to statistical reasoning. Frequentism is seen as establishing a figure of merit for a statistical study, while Bayesianism plays the key role in determining inferences based upon statistical evidence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا