ترغب بنشر مسار تعليمي؟ اضغط هنا

On Prediction Properties of Kriging: Uniform Error Bounds and Robustness

79   0   0.0 ( 0 )
 نشر من قبل Wenjia Wang
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Kriging based on Gaussian random fields is widely used in reconstructing unknown functions. The kriging method has pointwise predictive distributions which are computationally simple. However, in many applications one would like to predict for a range of untried points simultaneously. In this work we obtain some error bounds for the (simple) kriging predictor under the uniform metric. It works for a scattered set of input points in an arbitrary dimension, and also covers the case where the covariance function of the Gaussian process is misspecified. These results lead to a better understanding of the rate of convergence of kriging under the Gaussian or the Matern correlation functions, the relationship between space-filling designs and kriging models, and the robustness of the Matern correlation functions.

قيم البحث

اقرأ أيضاً

97 - Rui Tuo , Wenjia Wang 2019
This work investigates the prediction performance of the kriging predictors. We derive some error bounds for the prediction error in terms of non-asymptotic probability under the uniform metric and $L_p$ metrics when the spectral densities of both th e true and the imposed correlation functions decay algebraically. The Matern family is a prominent class of correlation functions of this kind. Our analysis shows that, when the smoothness of the imposed correlation function exceeds that of the true correlation function, the prediction error becomes more sensitive to the space-filling property of the design points. In particular, the kriging predictor can still reach the optimal rate of convergence, if the experimental design scheme is quasi-uniform. Lower bounds of the kriging prediction error are also derived under the uniform metric and $L_p$ metrics. An accurate characterization of this error is obtained, when an oversmoothed correlation function and a space-filling design is used.
132 - Martin Wahl 2018
We analyse the prediction error of principal component regression (PCR) and prove non-asymptotic upper bounds for the corresponding squared risk. Under mild assumptions, we show that PCR performs as well as the oracle method obtained by replacing emp irical principal components by their population counterparts. Our approach relies on upper bounds for the excess risk of principal component analysis.
Estimation of the prediction error of a linear estimation rule is difficult if the data analyst also use data to select a set of variables and construct the estimation rule using only the selected variables. In this work, we propose an asymptotically unbiased estimator for the prediction error after model search. Under some additional mild assumptions, we show that our estimator converges to the true prediction error in $L^2$ at the rate of $O(n^{-1/2})$, with $n$ being the number of data points. Our estimator applies to general selection procedures, not requiring analytical forms for the selection. The number of variables to select from can grow as an exponential factor of $n$, allowing applications in high-dimensional data. It also allows model misspecifications, not requiring linear underlying models. One application of our method is that it provides an estimator for the degrees of freedom for many discontinuous estimation rules like best subset selection or relaxed Lasso. Connection to Steins Unbiased Risk Estimator is discussed. We consider in-sample prediction errors in this work, with some extension to out-of-sample errors in low dimensional, linear models. Examples such as best subset selection and relaxed Lasso are considered in simulations, where our estimator outperforms both $C_p$ and cross validation in various settings.
We consider the problem of finding confidence intervals for the risk of forecasting the future of a stationary, ergodic stochastic process, using a model estimated from the past of the process. We show that a bootstrap procedure provides valid confid ence intervals for the risk, when the data source is sufficiently mixing, and the loss function and the estimator are suitably smooth. Autoregressive (AR(d)) models estimated by least squares obey the necessary regularity conditions, even when mis-specified, and simulations show that the finite- sample coverage of our bounds quickly converges to the theoretical, asymptotic level. As an intermediate step, we derive sufficient conditions for asymptotic independence between empirical distribution functions formed by splitting a realization of a stochastic process, of independent interest.
84 - Beibin Li , Yao Lu , Chi Wang 2021
Random uniform sampling has been studied in various statistical tasks but few of them have covered the Q-error metric for cardinality estimation (CE). In this paper, we analyze the confidence intervals of random uniform sampling with and without repl acement for single-table CE. Results indicate that the upper Q-error bound depends on the sample size and true cardinality. Our bound gives a rule-of-thumb for how large a sample should be kept for single-table CE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا