ﻻ يوجد ملخص باللغة العربية
We present the synthesis of D0$_{22}$ Mn$_{3 - delta}$Ga ($delta$ = 0, 1) Heusler alloys by Spark Plasma Sintering method. The single phase Mn$_3$Ga (T$_mathrm{c}$ $simeq$ 780 K) is synthesized, while Mn$_2$Ga (T$_mathrm{c}$ $simeq$ 710 K) is found to coexist with a near-stoichiometric room temperature paramagnetic Mn$_9$Ga$_5$~($approx$ 15 %) phase due to its lower formation energy, as confirmed from our density functional theory (DFT) calculations. The alloys show hard magnetic behavior with large room temperature spontaneous magnetization m$_s$(80 kOe) = 1.63 (0.83) $mu_mathrm{B}$/f.u. and coercivity H$_mathrm{c}$ = 4.28 (3.35) kOe for Mn$_3$Ga (Mn$_2$Ga). The magnetic properties are further investigated till T$_mathrm{c}$ and the H$_mathrm{c}$ (T) analysis by Stoner-Wohlfarth model shows the nucleation mechanism for the magnetization reversal. The experimental results are well supported by DFT calculations, which reveal that the ground state of D0$_{22}$ Mn$_2$Ga is achieved by the removal of Mn-atoms from full Heusler Mn$_3$Ga structure in accordance with half Heusler alloy picture.
Multiferroic BiFeO3 (BFO) / La0.7Sr0.3MnO3 heterostructured thin films were grown by pulsed laser deposition on polished spark plasma sintered LaAlO3 (LAO) polycrystalline substrates. Both polycrystalline LAO substrates and BFO films were locally cha
Perpendicular magnetization is essential for high-density memory application using magnetic materials. High-spin polarization of conduction electrons is also required for realizing large electric signals from spin-dependent transport phenomena. Heusl
The Mn$_3$Ga Heusler compound and related alloys are the most promising materials for the realization of spin-transfer-torque switching in magneto tunneling junctions. Improved performance can be achieved by high quality interfaces in these multilaye
We investigated theoretically electronic and magnetic properties of the perovskite material SrCoO$_{3-delta}$ with $deltaleq 0.15$ using a projector-augmented plane-wave method and a Greens function method. This material is known from various experim
The {em around-mean-field} LSDA+U correlated band theory is applied to investigate the electronic and magnetic structure of $fcc$-Pu-Am alloys. Despite a lattice expansion caused by the Am atoms, neither tendency to 5$f$ localization nor formation of