ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation on Mn$_{3-delta}$Ga/MgO interface for magnetic tunneling junctions

189   0   0.0 ( 0 )
 نشر من قبل Carlos Eduardo ViolBarbosa
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Mn$_3$Ga Heusler compound and related alloys are the most promising materials for the realization of spin-transfer-torque switching in magneto tunneling junctions. Improved performance can be achieved by high quality interfaces in these multilayered structured devices. In this context, the interface between Mn$_{1.63}$Ga and MgO is of particular interest because of its spin polarization properties in tunneling junctions. We performed a chemical characterization of the MgO/Mn$_{1.63}$Ga junction by hard x-ray photoelectron spectroscopy (HAXPES). The experiment indicated the formation of Ga-O bonds at the interface and evidenced changes in the local environment of Mn atoms in the proximity of the MgO film. In addition, we show that the insertion of a metallic Mg-layer interfacing the MgO and Mn--Ga film strongly suppresses the oxidation of gallium.



قيم البحث

اقرأ أيضاً

While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Greens function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices.
Electronic and magnetic properties of Ga$_{1-x}$Mn$_{x}$As, obtained from first-principles calculations employing the hybrid HSE06 functional, are presented for $x=6.25%$ and $12.5%$ under pressures ranging from 0 to 15 GPa. In agreement with photoem ission experiments at ambient pressure, we find for $x=6.25%$ that non-hybridized Mn-3$d$ levels and Mn-induced states reside about 5 and 0.4 eV below the Fermi energy, respectively. For elevated pressures, the Mn-3$d$ levels, Mn-induced states, and the Fermi level shift towards higher energies, however, the position of the Mn-induced states relative to the Fermi energy remains constant due to hybridization of the Mn-3$d$ levels with the valence As-4$p$ orbitals. We also evaluate, employing Monte Carlo simulations, the Curie temperature ($T_{{rm C}}$). At zero pressure, we obtain $T_{{rm C}}=181$K, whereas the pressure-induced changes in $T_{{rm C}}$ are d$T_{{rm C}}$/d$p=+4.3$K/GPa for $x=12.5%$ and an estimated value of d$T_{{rm C}}$/d$papprox+2.2$K/GPa for $x=6.25%$ under pressures up to 6 GPa. The determined values of d$T_{{rm C}}$/d$p$ compare favorably with d$T_{{rm C}}$/d$p=+$(2-3) K/GPa at $pleq1.2$GPa found experimentally and estimated within the $p$-$d$ Zener model for Ga$_{0.93}$Mn$_{0.07}$As in the regime where hole localization effects are of minor importance [M. Gryglas-Borysiewicz $et$ $al$., Phys. Rev. B ${bf 82}$, 153204 (2010)].
290 - Xiaobing Feng 2008
The interface structure of Fe/MgO(100) magnetic tunnel junctions predicted by density functional theory (DFT) depends significantly on the choice of exchange and correlation functional. Bader analysis reveals that structures obtained by relaxing the cell with the local spin-density approximation (LSDA) display a different charge transfer than those relaxed with the generalized gradient approximation (GGA). As a consequence, the electronic transport is found to be extremely sensitive to the interface structure. In particular, the conductance for the LSDA-relaxed geometry is about one order of magnitude smaller than that of the GGA-relaxed one. The high sensitivity of the electronic current to the details of the interface might explain the discrepancy between the experimental and calculated values of magnetoresistance.
We present the synthesis of D0$_{22}$ Mn$_{3 - delta}$Ga ($delta$ = 0, 1) Heusler alloys by Spark Plasma Sintering method. The single phase Mn$_3$Ga (T$_mathrm{c}$ $simeq$ 780 K) is synthesized, while Mn$_2$Ga (T$_mathrm{c}$ $simeq$ 710 K) is found t o coexist with a near-stoichiometric room temperature paramagnetic Mn$_9$Ga$_5$~($approx$ 15 %) phase due to its lower formation energy, as confirmed from our density functional theory (DFT) calculations. The alloys show hard magnetic behavior with large room temperature spontaneous magnetization m$_s$(80 kOe) = 1.63 (0.83) $mu_mathrm{B}$/f.u. and coercivity H$_mathrm{c}$ = 4.28 (3.35) kOe for Mn$_3$Ga (Mn$_2$Ga). The magnetic properties are further investigated till T$_mathrm{c}$ and the H$_mathrm{c}$ (T) analysis by Stoner-Wohlfarth model shows the nucleation mechanism for the magnetization reversal. The experimental results are well supported by DFT calculations, which reveal that the ground state of D0$_{22}$ Mn$_2$Ga is achieved by the removal of Mn-atoms from full Heusler Mn$_3$Ga structure in accordance with half Heusler alloy picture.
The capacitance of MgO based magnetic tunnel junctions (MTJs) has been observed to be magnetic field dependent. We propose an equivalent circuit for the MTJs with a parallel-leaky capacitance (Cl) across the series combination of geometric and interf acial capacitance. The analysis of junctions with different tunneling magnetoresistance values suggests higher Cl for low TMR junctions. Using Cole-Cole plots the capacitive nature of MTJs is manifested. Fitting with Maxwell-Wagner capacitance model validates the RC parallel network model for MTJs and the extracted field dependent parameters match with the experimental values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا