ترغب بنشر مسار تعليمي؟ اضغط هنا

Online tensor factorization and CP-dictionary learning for Markovian data

103   0   0.0 ( 0 )
 نشر من قبل Hanbaek Lyu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Online Tensor Factorization (OTF) is a fundamental tool in learning low-dimensional interpretable features from streaming multi-modal data. While various algorithmic and theoretical aspects of OTF have been investigated recently, general convergence guarantee to stationary points of the objective function without any incoherence or sparsity assumptions is still lacking even for the i.i.d. case. In this work, we introduce a novel OTF algorithm that learns a CANDECOMP/PARAFAC (CP) basis from a given stream of tensor-valued data under general constraints, including nonnegativity constraints that induce interpretability of learned CP basis. We prove that our algorithm converges almost surely to the set of stationary points of the objective function under the hypothesis that the sequence of data tensors is generated by some underlying Markov chain. Our setting covers the classical i.i.d. case as well as a wide range of application contexts including data streams generated by independent or MCMC sampling. Our result closes a gap between OTF and Online Matrix Factorization in global convergence analysis. Experimentally, we show that our OTF algorithm converges much faster than standard algorithms for nonnegative tensor factorization tasks on both synthetic and real-world data. Also, we demonstrate the utility of our algorithm on a diverse set of examples from image, video, and time-series data, illustrating how one may learn qualitatively different CP-dictionaries from the same tensor data by exploiting the tensor structure in multiple ways.



قيم البحث

اقرأ أيضاً

67 - Hanbaek Lyu , Deanna Needell , 2019
Online Matrix Factorization (OMF) is a fundamental tool for dictionary learning problems, giving an approximate representation of complex data sets in terms of a reduced number of extracted features. Convergence guarantees for most of the OMF algorit hms in the literature assume independence between data matrices, and the case of dependent data streams remains largely unexplored. In this paper, we show that a non-convex generalization of the well-known OMF algorithm for i.i.d. stream of data in citep{mairal2010online} converges almost surely to the set of critical points of the expected loss function, even when the data matrices are functions of some underlying Markov chain satisfying a mild mixing condition. This allows one to extract features more efficiently from dependent data streams, as there is no need to subsample the data sequence to approximately satisfy the independence assumption. As the main application, by combining online non-negative matrix factorization and a recent MCMC algorithm for sampling motifs from networks, we propose a novel framework of Network Dictionary Learning, which extracts ``network dictionary patches from a given network in an online manner that encodes main features of the network. We demonstrate this technique and its application to network denoising problems on real-world network data.
In recent years, a class of dictionaries have been proposed for multidimensional (tensor) data representation that exploit the structure of tensor data by imposing a Kronecker structure on the dictionary underlying the data. In this work, a novel alg orithm called STARK is provided to learn Kronecker structured dictionaries that can represent tensors of any order. By establishing that the Kronecker product of any number of matrices can be rearranged to form a rank-1 tensor, we show that Kronecker structure can be enforced on the dictionary by solving a rank-1 tensor recovery problem. Because rank-1 tensor recovery is a challenging nonconvex problem, we resort to solving a convex relaxation of this problem. Empirical experiments on synthetic and real data show promising results for our proposed algorithm.
We consider the problem of factorizing a structured 3-way tensor into its constituent Canonical Polyadic (CP) factors. This decomposition, which can be viewed as a generalization of singular value decomposition (SVD) for tensors, reveals how the tens or dimensions (features) interact with each other. However, since the factors are a priori unknown, the corresponding optimization problems are inherently non-convex. The existing guaranteed algorithms which handle this non-convexity incur an irreducible error (bias), and only apply to cases where all factors have the same structure. To this end, we develop a provable algorithm for online structured tensor factorization, wherein one of the factors obeys some incoherence conditions, and the others are sparse. Specifically we show that, under some relatively mild conditions on initialization, rank, and sparsity, our algorithm recovers the factors exactly (up to scaling and permutation) at a linear rate. Complementary to our theoretical results, our synthetic and real-world data evaluations showcase superior performance compared to related techniques. Moreover, its scalability and ability to learn on-the-fly makes it suitable for real-world tasks.
This paper introduces a new nonlinear dictionary learning method for histograms in the probability simplex. The method leverages optimal transport theory, in the sense that our aim is to reconstruct histograms using so-called displacement interpolati ons (a.k.a. Wasserstein barycenters) between dictionary atoms; such atoms are themselves synthetic histograms in the probability simplex. Our method simultaneously estimates such atoms, and, for each datapoint, the vector of weights that can optimally reconstruct it as an optimal transport barycenter of such atoms. Our method is computationally tractable thanks to the addition of an entropic regularization to the usual optimal transportation problem, leading to an approximation scheme that is efficient, parallel and simple to differentiate. Both atoms and weights are learned using a gradient-based descent method. Gradients are obtained by automatic differentiation of the generalized Sinkhorn iterations that yield barycenters with entropic smoothing. Because of its formulation relying on Wasserstein barycenters instead of the usual matrix product between dictionary and codes, our method allows for nonlinear relationships between atoms and the reconstruction of input data. We illustrate its application in several different image processing settings.
Low rank tensor learning, such as tensor completion and multilinear multitask learning, has received much attention in recent years. In this paper, we propose higher order matching pursuit for low rank tensor learning problems with a convex or a nonc onvex cost function, which is a generalization of the matching pursuit type methods. At each iteration, the main cost of the proposed methods is only to compute a rank-one tensor, which can be done efficiently, making the proposed methods scalable to large scale problems. Moreover, storing the resulting rank-one tensors is of low storage requirement, which can help to break the curse of dimensionality. The linear convergence rate of the proposed methods is established in various circumstances. Along with the main methods, we also provide a method of low computational complexity for approximately computing the rank-one tensors, with provable approximation ratio, which helps to improve the efficiency of the main methods and to analyze the convergence rate. Experimental results on synthetic as well as real datasets verify the efficiency and effectiveness of the proposed methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا