ﻻ يوجد ملخص باللغة العربية
The paper gives sharp spectral gap conditions for existence of inertial manifolds for abstract semilinear parabolic equations with non-self-adjoint leading part. Main attention is paid to the case where this leading part have Jordan cells which appear after applying the so-called Kwak transform to various important equations such as 2D Navier-Stokes equations, reaction-diffusion-advection systems, etc. The different forms of Kwak transforms and relations between them are also discussed.
The paper gives a comprehensive study of inertial manifolds for semilinear parabolic equations and their smoothness using the spatial averaging method suggested by G. Sell and J. Mallet-Paret. We present a universal approach which covers the most p
These notes are devoted to the problem of finite-dimensional reduction for parabolic PDEs. We give a detailed exposition of the classical theory of inertial manifolds as well as various attempts to generalize it based on the so-called Mane projection
We study the weighted light ray transform $L$ of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze $L$ as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike sing
The paper is devoted to a comprehensive study of smoothness of inertial manifolds for abstract semilinear parabolic problems. It is well known that in general we cannot expect more than $C^{1,varepsilon}$-regularity for such manifolds (for some posit
In this paper we obtain $C^{1,theta}$-estimates on the distance of inertial manifolds for dynamical systems generated by evolutionary parabolic type equations. We consider the situation where the systems are defined in different phase spaces and we e