ترغب بنشر مسار تعليمي؟ اضغط هنا

The Light Ray transform on Lorentzian manifolds

117   0   0.0 ( 0 )
 نشر من قبل Plamen Stefanov
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the weighted light ray transform $L$ of integrating functions on a Lorentzian manifold over lightlike geodesics. We analyze $L$ as a Fourier Integral Operator and show that if there are no conjugate points, one can recover the spacelike singularities of a function $f$ from its the weighted light ray transform $Lf$ by a suitable filtered back-projection.

قيم البحث

اقرأ أيضاً

294 - R. Milson , N. Pelavas 2007
We prove that a four-dimensional Lorentzian manifold that is curvature homogeneous of order 3, or $CH_3$ for short, is necessarily locally homogeneous. We also exhibit and classify four-dimensional Lorentzian, $CH_2$ manifolds that are not homogeneous.
We examine the existence of one parameter groups of diffeomorphisms whose infinitesimal generators annihilate all scalar polynomial curvature invariants through the application of the Lie derivative, known as $mathcal{I}$-preserving diffeomorphisms. Such mappings are a generalization of isometries and appear to be related to nil-Killing vector fields, for which the associated Lie derivative of the metric yields a nilpotent rank two tensor. We show that the set of nil-Killing vector fields contains Lie algebras, although the Lie algebras may be infinite and can contain elements which are not $mathcal{I}$-preserving diffeomorphisms. We then study the curvature structure of a general Lorenztian manifold, or spacetime, to show that $mathcal{I}$-preserving diffeomorphism will only exists for the $mathcal{I}$-degenerate spacetimes and to determine when the $mathcal{I}$-preserving diffeomorphisms are generated by nil-Killing vector fields. We identify necessary and sufficient conditions for the degenerate Kundt spacetimes to admit an additional $mathcal{I}$-preserving diffeomorphism and conclude with an application to the class of Kundt spacetimes with constant scalar polynomial curvature invariants to show that a finite transitive Lie algebra of nil-Killing vector fields always exists for these spacetimes.
We shall discuss the inhomogeneous Dirichlet problem for: $f(x,u, Du, D^2u) = psi(x)$ where $f$ is a natural differential operator, with a restricted domain $F$, on a manifold $X$. By natural we mean operators that arise intrinsically from a given ge ometry on $X$. An important point is that the equation need not be convex and can be highly degenerate. Furthermore, the inhomogeneous term can take values at the boundary of the restricted domain $F$ of the operator $f$. A simple example is the real Monge-Amp`ere operator ${rm det}({rm Hess},u) = psi(x)$ on a riemannian manifold $X$, where ${rm Hess}$ is the riemannian Hessian, the restricted domain is $F = {{rm Hess} geq 0}$, and $psi$ is continuous with $psigeq0$. A main new tool is the idea of local jet-equivalence, which gives rise to local weak comparison, and then to comparison under a natural and necessary global assumption. The main theorem applies to pairs $(F,f)$, which are locally jet-equivalent to a given constant coefficient pair $({bf F}, {bf f})$. This covers a large family of geometric equations on manifolds: orthogonally invariant operators on a riemannian manifold, G-invariant operators on manifolds with G-structure, operators on almost complex manifolds, and operators, such as the Lagrangian Monge-Amp`ere operator, on symplectic manifolds. It also applies to all branches of these operators. Complete existence and uniqueness results are established with existence requiring the same boundary assumptions as in the homogeneous case [10]. We also have results where the inhomogeneous term $psi$ is a delta function.
We prove an existence result for the Poisson equation on non-compact Riemannian manifolds satisfying weighted Poincare inequalities outside compact sets. Our result applies to a large class of manifolds including, for instance, all non-parabolic mani folds with minimal positive Greens function vanishing at infinity. On the source function we assume a sharp pointwise decay depending on the weight appearing in the Poincare inequality and on the behavior of the Ricci curvature at infinity. We do not require any curvature or spectral assumptions on the manifold.
For free boundary problems on Euclidean spaces, the monotonicity formulas of Alt-Caffarelli-Friedman and Caffarelli-Jerison-Kenig are cornerstones for the regularity theory as well as the existence theory. In this article we establish the analogs of these results for the Laplace-Beltrami operator on Riemannian manifolds. As an application we show that our monotonicity theorems can be employed to prove the Lipschitz continuity for the solutions of a general class of two-phase free boundary problems on Riemannian manifolds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا