ﻻ يوجد ملخص باللغة العربية
In this paper we obtain $C^{1,theta}$-estimates on the distance of inertial manifolds for dynamical systems generated by evolutionary parabolic type equations. We consider the situation where the systems are defined in different phase spaces and we estimate the distance in terms of the distance of the resolvent operators of the corresponding elliptic operators and the distance of the nonlinearities of the equations.
We show that weak solutions to parabolic equations in divergence form with zero Dirichlet boundary conditions are continuously differentiable up to the boundary when the leading coefficients have Dini mean oscillation and the lower order coefficients
We show that any weak solution to elliptic equations in divergence form is continuously differentiable provided that the modulus of continuity of coefficients in the $L^1$-mean sense satisfies the Dini condition. This in particular answers a question
We extend and improve the results in cite{DK16}: showing that weak solutions to full elliptic equations in divergence form with zero Dirichlet boundary conditions are continuously differentiable up to the boundary when the leading coefficients have D
The paper gives sharp spectral gap conditions for existence of inertial manifolds for abstract semilinear parabolic equations with non-self-adjoint leading part. Main attention is paid to the case where this leading part have Jordan cells which appea
The paper gives a comprehensive study of inertial manifolds for semilinear parabolic equations and their smoothness using the spatial averaging method suggested by G. Sell and J. Mallet-Paret. We present a universal approach which covers the most p