ﻻ يوجد ملخص باللغة العربية
The paper gives a comprehensive study of inertial manifolds for semilinear parabolic equations and their smoothness using the spatial averaging method suggested by G. Sell and J. Mallet-Paret. We present a universal approach which covers the most part of known results obtained via this method as well as gives a number of new ones. Among our applications are reaction-diffusion equations, various types of generalized Cahn-Hilliard equations, including fractional and 6th order Cahn-Hilliard equations and several classes of modified Navier-Stokes equations including the Leray-$alpha$ regularization, hyperviscous regularization and their combinations. All of the results are obtained in 3D case with periodic boundary conditions.
The paper gives sharp spectral gap conditions for existence of inertial manifolds for abstract semilinear parabolic equations with non-self-adjoint leading part. Main attention is paid to the case where this leading part have Jordan cells which appea
These notes are devoted to the problem of finite-dimensional reduction for parabolic PDEs. We give a detailed exposition of the classical theory of inertial manifolds as well as various attempts to generalize it based on the so-called Mane projection
The paper is devoted to a comprehensive study of smoothness of inertial manifolds for abstract semilinear parabolic problems. It is well known that in general we cannot expect more than $C^{1,varepsilon}$-regularity for such manifolds (for some posit
In this paper we obtain $C^{1,theta}$-estimates on the distance of inertial manifolds for dynamical systems generated by evolutionary parabolic type equations. We consider the situation where the systems are defined in different phase spaces and we e
The existence of an inertial manifold for the 3D Cahn-Hilliard equation with periodic boundary conditions is verified using the proper extension of the so-called spatial averaging principle introduced by G. Sell and J. Mallet-Paret. Moreover, the extra regularity of this manifold is also obtained.