ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Deep Learning for Over-the-Air Spectrum Poisoning Attacks

111   0   0.0 ( 0 )
 نشر من قبل Tugba Erpek
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

An adversarial deep learning approach is presented to launch over-the-air spectrum poisoning attacks. A transmitter applies deep learning on its spectrum sensing results to predict idle time slots for data transmission. In the meantime, an adversary learns the transmitters behavior (exploratory attack) by building another deep neural network to predict when transmissions will succeed. The adversary falsifies (poisons) the transmitters spectrum sensing data over the air by transmitting during the short spectrum sensing period of the transmitter. Depending on whether the transmitter uses the sensing results as test data to make transmit decisions or as training data to retrain its deep neural network, either it is fooled into making incorrect decisions (evasion attack), or the transmitters algorithm is retrained incorrectly for future decisions (causative attack). Both attacks are energy efficient and hard to detect (stealth) compared to jamming the long data transmission period, and substantially reduce the throughput. A dynamic defense is designed for the transmitter that deliberately makes a small number of incorrect transmissions (selected by the confidence score on channel classification) to manipulate the adversarys training data. This defense effectively fools the adversary (if any) and helps the transmitter sustain its throughput with or without an adversary present.

قيم البحث

اقرأ أيضاً

We consider a wireless communication system that consists of a transmitter, a receiver, and an adversary. The transmitter transmits signals with different modulation types, while the receiver classifies its received signals to modulation types using a deep learning-based classifier. In the meantime, the adversary makes over-the-air transmissions that are received as superimposed with the transmitters signals to fool the classifier at the receiver into making errors. While this evasion attack has received growing interest recently, the channel effects from the adversary to the receiver have been ignored so far such that the previous attack mechanisms cannot be applied under realistic channel effects. In this paper, we present how to launch a realistic evasion attack by considering channels from the adversary to the receiver. Our results show that modulation classification is vulnerable to an adversarial attack over a wireless channel that is modeled as Rayleigh fading with path loss and shadowing. We present various adversarial attacks with respect to availability of information about channel, transmitter input, and classifier architecture. First, we present two types of adversarial attacks, namely a targeted attack (with minimum power) and non-targeted attack that aims to change the classification to a target label or to any other label other than the true label, respectively. Both are white-box attacks that are transmitter input-specific and use channel information. Then we introduce an algorithm to generate adversarial attacks using limited channel information where the adversary only knows the channel distribution. Finally, we present a black-box universal adversarial perturbation (UAP) attack where the adversary has limited knowledge about both channel and transmitter input.
In this paper we investigate speech denoising as a defense against adversarial attacks on automatic speech recognition (ASR) systems. Adversarial attacks attempt to force misclassification by adding small perturbations to the original speech signal. We propose to counteract this by employing a neural-network based denoiser as a pre-processor in the ASR pipeline. The denoiser is independent of the downstream ASR model, and thus can be rapidly deployed in existing systems. We found that training the denoisier using a perceptually motivated loss function resulted in increased adversarial robustness without compromising ASR performance on benign samples. Our defense was evaluated (as a part of the DARPA GARD program) on the Kenansville attack strategy across a range of attack strengths and speech samples. An average improvement in Word Error Rate (WER) of about 7.7% was observed over the undefended model at 20 dB signal-to-noise-ratio (SNR) attack strength.
The explosion of 5G networks and the Internet of Things will result in an exceptionally crowded RF environment, where techniques such as spectrum sharing and dynamic spectrum access will become essential components of the wireless communication proce ss. In this vision, wireless devices must be able to (i) learn to autonomously extract knowledge from the spectrum on-the-fly; and (ii) react in real time to the inferred spectrum knowledge by appropriately changing communication parameters, including frequency band, symbol modulation, coding rate, among others. Traditional CPU-based machine learning suffers from high latency, and requires application-specific and computationally-intensive feature extraction/selection algorithms. In this paper, we present RFLearn, the first system enabling spectrum knowledge extraction from unprocessed I/Q samples by deep learning directly in the RF loop. RFLearn provides (i) a complete hardware/software architecture where the CPU, radio transceiver and learning/actuation circuits are tightly connected for maximum performance; and (ii) a learning circuit design framework where the latency vs. hardware resource consumption trade-off can explored. We implement and evaluate the performance of RFLearn on custom software-defined radio built on a system-on-chip (SoC) ZYNQ-7000 device mounting AD9361 radio transceivers and VERT2450 antennas. We showcase the capabilities of RFLearn by applying it to solving the fundamental problems of modulation and OFDM parameter recognition. Experimental results reveal that RFLearn decreases latency and power by about 17x and 15x with respect to a software-based solution, with a comparatively low hardware resource consumption.
75 - Gan Sun , Yang Cong 2020
Federated machine learning which enables resource constrained node devices (e.g., mobile phones and IoT devices) to learn a shared model while keeping the training data local, can provide privacy, security and economic benefits by designing an effect ive communication protocol. However, the communication protocol amongst different nodes could be exploited by attackers to launch data poisoning attacks, which has been demonstrated as a big threat to most machine learning models. In this paper, we attempt to explore the vulnerability of federated machine learning. More specifically, we focus on attacking a federated multi-task learning framework, which is a federated learning framework via adopting a general multi-task learning framework to handle statistical challenges. We formulate the problem of computing optimal poisoning attacks on federated multi-task learning as a bilevel program that is adaptive to arbitrary choice of target nodes and source attacking nodes. Then we propose a novel systems-aware optimization method, ATTack on Federated Learning (AT2FL), which is efficiency to derive the implicit gradients for poisoned data, and further compute optimal attack strategies in the federated machine learning. Our work is an earlier study that considers issues of data poisoning attack for federated learning. To the end, experimental results on real-world datasets show that federated multi-task learning model is very sensitive to poisoning attacks, when the attackers either directly poison the target nodes or indirectly poison the related nodes by exploiting the communication protocol.
We show that compact fully connected (FC) deep learning networks trained to classify wireless protocols using a hierarchy of multiple denoising autoencoders (AEs) outperform reference FC networks trained in a typical way, i.e., with a stochastic grad ient based optimization of a given FC architecture. Not only is the complexity of such FC network, measured in number of trainable parameters and scalar multiplications, much lower than the reference FC and residual models, its accuracy also outperforms both models for nearly all tested SNR values (0 dB to 50dB). Such AE-trained networks are suited for in-situ protocol inference performed by simple mobile devices based on noisy signal measurements. Training is based on the data transmitted by real devices, and collected in a controlled environment, and systematically augmented by a policy-based data synthesis process by adding to the signal any subset of impairments commonly seen in a wireless receiver.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا