ﻻ يوجد ملخص باللغة العربية
In this paper we investigate speech denoising as a defense against adversarial attacks on automatic speech recognition (ASR) systems. Adversarial attacks attempt to force misclassification by adding small perturbations to the original speech signal. We propose to counteract this by employing a neural-network based denoiser as a pre-processor in the ASR pipeline. The denoiser is independent of the downstream ASR model, and thus can be rapidly deployed in existing systems. We found that training the denoisier using a perceptually motivated loss function resulted in increased adversarial robustness without compromising ASR performance on benign samples. Our defense was evaluated (as a part of the DARPA GARD program) on the Kenansville attack strategy across a range of attack strengths and speech samples. An average improvement in Word Error Rate (WER) of about 7.7% was observed over the undefended model at 20 dB signal-to-noise-ratio (SNR) attack strength.
Neural networks are vulnerable to adversarial examples, which poses a threat to their application in security sensitive systems. We propose high-level representation guided denoiser (HGD) as a defense for image classification. Standard denoiser suffe
Humans rely heavily on shape information to recognize objects. Conversely, convolutional neural networks (CNNs) are biased more towards texture. This is perhaps the main reason why CNNs are vulnerable to adversarial examples. Here, we explore how sha
Robust speaker recognition, including in the presence of malicious attacks, is becoming increasingly important and essential, especially due to the proliferation of several smart speakers and personal agents that interact with an individuals voice co
This paper presents channel-aware adversarial attacks against deep learning-based wireless signal classifiers. There is a transmitter that transmits signals with different modulation types. A deep neural network is used at each receiver to classify i
We consider adversarial machine learning based attacks on power allocation where the base station (BS) allocates its transmit power to multiple orthogonal subcarriers by using a deep neural network (DNN) to serve multiple user equipments (UEs). The D