ترغب بنشر مسار تعليمي؟ اضغط هنا

Big Data Goes Small: Real-Time Spectrum-Driven Embedded Wireless Networking Through Deep Learning in the RF Loop

75   0   0.0 ( 0 )
 نشر من قبل Francesco Restuccia
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The explosion of 5G networks and the Internet of Things will result in an exceptionally crowded RF environment, where techniques such as spectrum sharing and dynamic spectrum access will become essential components of the wireless communication process. In this vision, wireless devices must be able to (i) learn to autonomously extract knowledge from the spectrum on-the-fly; and (ii) react in real time to the inferred spectrum knowledge by appropriately changing communication parameters, including frequency band, symbol modulation, coding rate, among others. Traditional CPU-based machine learning suffers from high latency, and requires application-specific and computationally-intensive feature extraction/selection algorithms. In this paper, we present RFLearn, the first system enabling spectrum knowledge extraction from unprocessed I/Q samples by deep learning directly in the RF loop. RFLearn provides (i) a complete hardware/software architecture where the CPU, radio transceiver and learning/actuation circuits are tightly connected for maximum performance; and (ii) a learning circuit design framework where the latency vs. hardware resource consumption trade-off can explored. We implement and evaluate the performance of RFLearn on custom software-defined radio built on a system-on-chip (SoC) ZYNQ-7000 device mounting AD9361 radio transceivers and VERT2450 antennas. We showcase the capabilities of RFLearn by applying it to solving the fundamental problems of modulation and OFDM parameter recognition. Experimental results reveal that RFLearn decreases latency and power by about 17x and 15x with respect to a software-based solution, with a comparatively low hardware resource consumption.

قيم البحث

اقرأ أيضاً

We designed and implemented a deep learning based RF signal classifier on the Field Programmable Gate Array (FPGA) of an embedded software-defined radio platform, DeepRadio, that classifies the signals received through the RF front end to different m odulation types in real time and with low power. This classifier implementation successfully captures complex characteristics of wireless signals to serve critical applications in wireless security and communications systems such as identifying spoofing signals in signal authentication systems, detecting target emitters and jammers in electronic warfare (EW) applications, discriminating primary and secondary users in cognitive radio networks, interference hunting, and adaptive modulation. Empowered by low-power and low-latency embedded computing, the deep neural network runs directly on the FPGA fabric of DeepRadio, while maintaining classifier accuracy close to the software performance. We evaluated the performance when another SDR (USRP) transmits signals with different modulation types at different power levels and DeepRadio receives the signals and classifies them in real time on its FPGA. A smartphone with a mobile app is connected to DeepRadio to initiate the experiment and visualize the classification results. With real radio transmissions over the air, we show that the classifier implemented on DeepRadio achieves high accuracy with low latency (microsecond per sample) and low energy consumption (microJoule per sample), and this performance is not matched by other embedded platforms such as embedded graphics processing unit (GPU).
We show that compact fully connected (FC) deep learning networks trained to classify wireless protocols using a hierarchy of multiple denoising autoencoders (AEs) outperform reference FC networks trained in a typical way, i.e., with a stochastic grad ient based optimization of a given FC architecture. Not only is the complexity of such FC network, measured in number of trainable parameters and scalar multiplications, much lower than the reference FC and residual models, its accuracy also outperforms both models for nearly all tested SNR values (0 dB to 50dB). Such AE-trained networks are suited for in-situ protocol inference performed by simple mobile devices based on noisy signal measurements. Training is based on the data transmitted by real devices, and collected in a controlled environment, and systematically augmented by a policy-based data synthesis process by adding to the signal any subset of impairments commonly seen in a wireless receiver.
The problem of quality of service (QoS) and jamming-aware communications is considered in an adversarial wireless network subject to external eavesdropping and jamming attacks. To ensure robust communication against jamming, an interference-aware rou ting protocol is developed that allows nodes to avoid communication holes created by jamming attacks. Then, a distributed cooperation framework, based on deep reinforcement learning, is proposed that allows nodes to assess network conditions and make deep learning-driven, distributed, and real-time decisions on whether to participate in data communications, defend the network against jamming and eavesdropping attacks, or jam other transmissions. The objective is to maximize the network performance that incorporates throughput, energy efficiency, delay, and security metrics. Simulation results show that the proposed jamming-aware routing approach is robust against jamming and when throughput is prioritized, the proposed deep reinforcement learning approach can achieve significant (measured as three-fold) increase in throughput, compared to a benchmark policy with fixed roles assigned to nodes.
An adversarial deep learning approach is presented to launch over-the-air spectrum poisoning attacks. A transmitter applies deep learning on its spectrum sensing results to predict idle time slots for data transmission. In the meantime, an adversary learns the transmitters behavior (exploratory attack) by building another deep neural network to predict when transmissions will succeed. The adversary falsifies (poisons) the transmitters spectrum sensing data over the air by transmitting during the short spectrum sensing period of the transmitter. Depending on whether the transmitter uses the sensing results as test data to make transmit decisions or as training data to retrain its deep neural network, either it is fooled into making incorrect decisions (evasion attack), or the transmitters algorithm is retrained incorrectly for future decisions (causative attack). Both attacks are energy efficient and hard to detect (stealth) compared to jamming the long data transmission period, and substantially reduce the throughput. A dynamic defense is designed for the transmitter that deliberately makes a small number of incorrect transmissions (selected by the confidence score on channel classification) to manipulate the adversarys training data. This defense effectively fools the adversary (if any) and helps the transmitter sustain its throughput with or without an adversary present.
This paper presents end-to-end learning from spectrum data - an umbrella term for new sophisticated wireless signal identification approaches in spectrum monitoring applications based on deep neural networks. End-to-end learning allows to (i) automat ically learn features directly from simple wireless signal representations, without requiring design of hand-crafted expert features like higher order cyclic moments, and (ii) train wireless signal classifiers in one end-to-end step which eliminates the need for complex multi-stage machine learning processing pipelines. The purpose of this article is to present the conceptual framework of end-to-end learning for spectrum monitoring and systematically introduce a generic methodology to easily design and implement wireless signal classifiers. Furthermore, we investigate the importance of the choice of wireless data representation to various spectrum monitoring tasks. In particular, two case studies are elaborated (i) modulation recognition and (ii) wireless technology interference detection. For each case study three convolutional neural networks are evaluated for the following wireless signal representations: temporal IQ data, the amplitude/phase representation and the frequency domain representation. From our analysis we prove that the wireless data representation impacts the accuracy depending on the specifics and similarities of the wireless signals that need to be differentiated, with different data representations resulting in accuracy variations of up to 29%. Experimental results show that using the amplitude/phase representation for recognizing modulation formats can lead to performance improvements up to 2% and 12% for medium to high SNR compared to IQ and frequency domain data, respectively. For the task of detecting interference, frequency domain representation outperformed amplitude/phase and IQ data representation up to 20%.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا